Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 106202    DOI: 10.1088/1674-1056/20/10/106202

Effect of nanocomposite structure on the thermoelectric properties of 0.7-at% Bi-doped Mg2Si nanocomposite

Yang Mei-Jun(杨梅君)a)b)†, Shen Qiang(沈强)b), and Zhang Lian-Meng(张联盟)b)
a Centre for Materials Research and Analysis, Wuhan University of Technology, Wuhan 430070, China; b State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Abstract  Nanocomposites offer a promising approach to the incorporation of nanostructured constituents into bulk thermoelectric materials. The 0.7-at% Bi-doped Mg2Si nanocomposites are prepared by spark plasma sintering of the mixture of nanoscale and microsized 0.7-at% Bi-doped Mg2Si powders. Microstructure analysis shows that the bulk material is composed of nano- and micrograins. Although the nanograin hinders electrical conduction, the nanocomposite structure is more helpful to reduce thermal conductivity and increase the Seebeck coefficient, hence improving thermoelectric performance. A dimensionless figure of merit of 0.8 is obtained for the 0.7-at% Bi-doped Mg2Si nanocomposite with 50-wt % nanopowder, which is about twice larger than that of the sample without nanopowder.
Keywords:  intermetallic compounds      nanostructures      semiconductors      thermoelectric effects  
Received:  06 December 2010      Revised:  10 June 2011      Accepted manuscript online: 
PACS:  62.23.Pq (Composites (nanosystems embedded in a larger structure))  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2007CB607501) and the Fundamental Research Funds for the Central Universities.

Cite this article: 

Yang Mei-Jun(杨梅君), Shen Qiang(沈强), and Zhang Lian-Meng(张联盟) Effect of nanocomposite structure on the thermoelectric properties of 0.7-at% Bi-doped Mg2Si nanocomposite 2011 Chin. Phys. B 20 106202

[1] Junichi T and Hiroyasu K 2007 Intermetallics 15 1202
[2] Rong R B, Aizawa T and Sun J Q 2007 Mater. Sci. Eng. B 136 111
[3] Ratai E and Augustine M P 2003 J. Phys. Chem. B 107 12573
[4] Morris R G, Redin D and Danielson G C 1958 Phys. Rev. 109 1909
[5] Kajikawa T, N Kimura and Yokoyama T 2003 Proceedings ICT' 03 August 17-21 2003 Palais des Congrks La Grande Motte, France p. 305
[6] Aizawa T and Song R 2006 Intermetallics 14 382
[7] Fedorov M I, Zaitsev V K and Vedernikov M V 2006 Proceedings ICT' 06 August 6-10 2006 Vienna, Austria p. 111
[8] Yu B L, Qi Q, Tang X F and Zhang Q J 2005 Acta Phys. Sin. 54 5763 (in Chinese)
[9] Tang X F, Chen L D and Goto T 2000 Acta Phys. Sin. 49 2437 (in Chinese)
[10] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K and Kanatzidis M G 2004 Science 303 818
[11] Zhao X B, Ji X H, Zhang Y H, Zhu T J, Tu J P and Zhang X B 2005 Appl. Phys. Lett. 86 062111
[12] Martin J, Nolas G S, Zhang W and Chen L 2007 Appl. Phys. Lett. 90 222112
[13] Yang R G and Chen G 2004 Phys. Rev. B 69 195316
[14] Dresselhaus M S, Chen G, Tang M Y, Yang R, Lee H, Wang D, Ren Z, Fleurial J and Gogna P 2007 Adv. Mater. (Weinheim, Ger.) 19 1043
[15] Wang L and Qin X Y 2003 Scripta Materialia 49 243
[16] Riffel M and Schilz J 1995 Scripta Metallurgica et Materialia 32 1951
[17] Wang L and Qin X Y 2007 Mater. Sci. Eng. A 459 216
[18] Lee C H, Lee S H, Chun S Y and Lee S J 2006 J. Nanosci. Nanotechnol. 6 3429
[19] Szczech J R and Jin S 2008 J. Solid State Chem. 181 1565
[20] Zhang Q, He J, Zhu T J, Zhang S N, Zhao X B and Tritt T M 2008 Appl. Phys. Lett. 93 102109
[21] Huang J W 2006 MDI Jade Users Handbook (Changsha: Central South University Press) p. 33 (in Chinese)
[22] Akasaka M, Iida T, Matssumoto A and Yamanaka K 2008 J. Appl. Phys. 104 013703
[23] LaBotz R J, Mason D R and O'Kane D F 1963 J. Electrochem. Soc. 110 127
[24] Noda Y, Kon H, Furukawa Y and Otsuka N 1992 Mater. Trans. JIM 33 851
[25] Liu E K, Zhu B S and Luo J S 1989 Semiconducting Materials (Beijing: National Defence Industry Press) p. 497 (in Chinese)
[26] Kishimoto K and Koyanagi T 2002 J. Appl. Phys. 92 2544
[27] Moizhes B Ya and Nemchinsky V 1992 Proceedings ICT' 92 October 7-9 1992 Arlington, Texas, USA p. 232
[28] Tani J and Kido H 2005 Physica B 364 220
[29] Goldsmid H J 1998 Electronic Refrigeration (Lodon: Pion) Vol. 2 p. 36
[30] Callaway 1959 J. Phys. Rev. 57 1046
[31] Nan C W and Birringer R 1998 Phys. Rev. B 57 8264
[32] Bhandari C M 1995 CRC Handbook of Thermoelectric ed. Rowe D M (New York: CRC Press) p. 57
[33] Deng S K, Tang X F and Zhang Q J 2007 Acta Phys. Sin. 56 4986 (in Chinese)
[34] Morelli D T and Caillat T 1995 Phys. Rev. B 51 9622
[1] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[2] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[3] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[4] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[5] Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances
Pietro Marabotti, Sonia Peggiani, Alessandro Vidale, and Carlo Spartaco Casari. Chin. Phys. B, 2022, 31(12): 125202.
[6] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[7] Atomic and electronic structures of p-type dopants in 4H-SiC
Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2021, 30(9): 096806.
[8] Water and nutrient recovery from urine: A lead up trail using nano-structured In2S3 photo electrodes
R Jayakrishnan, T R Sreerev, and Adith Varma. Chin. Phys. B, 2021, 30(5): 056103.
[9] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[10] Synaptic plasticity and classical conditioning mimicked in single indium-tungsten-oxide based neuromorphic transistor
Rui Liu(刘锐), Yongli He(何勇礼), Shanshan Jiang(姜珊珊), Li Zhu(朱力), Chunsheng Chen(陈春生), Ying Zhu(祝影), and Qing Wan(万青). Chin. Phys. B, 2021, 30(5): 058102.
[11] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[12] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[13] Morphological effect on electrochemical performance of nanostructural CrN
Zhengwei Xiong(熊政伟), Xuemei An(安雪梅), Qian Liu(刘倩), Jiayi Zhu(朱家艺), Xiaoqiang Zhang(张小强), Chenchun Hao(郝辰春), Qiang Yang(羊强), Zhipeng Gao(高志鹏), and Meng Zhang(张盟). Chin. Phys. B, 2021, 30(12): 128201.
[14] Superchiral fields generated by nanostructures and their applications for chiral sensing
Huizhen Zhang(张慧珍), Weixuan Zhang(张蔚暄), Saisai Hou(侯赛赛), Rongyao Wang(王荣瑶), and Xiangdong Zhang(张向东). Chin. Phys. B, 2021, 30(11): 113303.
[15] Ab-initio calculations of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications
Muhammad Rashid, Jamil M, Mahmood Q, Shahid M Ramay, Asif Mahmood A, and Ghaithan H M. Chin. Phys. B, 2021, 30(11): 116301.
No Suggested Reading articles found!