Special Issue:
SPECIAL TOPIC — Phononics and phonon engineering
|
SPECIAL TOPIC—Phononics and phonon engineering |
Prev
Next
|
|
|
Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms |
Cheng-Wei Wu(吴成伟)1, Changqing Xiang(向长青)2, Hengyu Yang(杨恒玉)1, Wu-Xing Zhou(周五星)1,†, Guofeng Xie(谢国锋)1, Baoli Ou(欧宝立)1, and Dan Wu(伍丹)3,‡ |
1 School of Materials Science and Engineering & Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China; 2 College of Information Science and Engineering, Jishou University, Jishou 416000, China; 3 School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114, China |
|
|
Abstract Using the first principles calculation and Boltzmann transport theory, we study the thermoelectric properties of Si2BN adsorbing halogen atoms (Si2BN-4X, $X=\textF$, Cl, Br, and I). The results show that the adsorption of halogen atoms can significantly regulate the energy band structure and lattice thermal conductivity of Si2BN. Among them, Si2BN-4I has the best thermoelectric performance, the figure of merit can reach 0.50 K at 300 K, which is about 16 times greater than that of Si2BN. This is because the adsorption of iodine atoms not only significantly increases the Seebeck coefficient due to band degeneracy, but also rapidly reduces the phonon thermal conductivity by enhancing phonon scattering. Our work proves the application potential of Si2BN-based crystals in the field of thermoelectricity and the effective method for metal crystals to open bandgaps by adsorbing halogens.
|
Received: 30 September 2020
Revised: 04 December 2020
Accepted manuscript online: 08 December 2020
|
PACS:
|
71.15.-m
|
(Methods of electronic structure calculations)
|
|
73.50.Lw
|
(Thermoelectric effects)
|
|
74.25.F-
|
(Transport properties)
|
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074115, 11874145, and 51775183) and the Hunan Provincial Natural Science Fund of China (Grant No. 2018JJ2125). |
Corresponding Authors:
†Corresponding author. E-mail: wuxingzhou@hnu.edu.cn ‡Corresponding author. E-mail: danwu@csust.edu.cn
|
Cite this article:
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹) Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms 2021 Chin. Phys. B 30 037304
|
1 Zeng Y J, Wu D, Cao X H, Zhou W X, Tang L M and Chen K Q 2020 Adv. Funct. Mater. 30 1903873 2 Pei Y Z, Wang H and Snyder G J 2012 Adv. Mater. 24 6125 3 Jiang P H, Liu H J, Cheng L, Fang D D, Zhang J, Wei J, Liang J H and Shi J 2017 Carbon 113 108 4 Zhou W X, Cheng Y, Chen K Q, Xie G F, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 1903829 5 Kovnir K and Toberer E S 2016 Chemistry of Materials 28 2463 6 Chetty R, Bali A and Mallik R C 2015 J. Mater. Chem. C 3 12364 7 Wu D, Cao X H, Chen S Z, Tang L M, Feng Y X, Chen K Q and Zhou W X 2019 J. Mater. Chem. A 7 19037 8 Zhou X Y, Yan Y C, Lu X, Zhu H T, Han X D, Chen G and Ren Z F 2018 Materials Today 21 974 9 Hatam-Lee S M, Rajabpour A and Volz S 2020 Carbon 161 816 10 Liang T, Zhang P, Yuan P, Zhai S P and Yang D G 2019 Nano Futures 3 015001 11 Wang X N and Tabarraei A 2016 Appl. Phys. Lett. 108 191905 12 Hinterleitner B, Knapp I, Poneder M, Shi Y P, M\"uller H, Eguchi G, Eisenmenger-Sittner G, St\"oger-Pollach M, Kakefuda Y, Kawamoto N, Guo Q, Baba T, Mori T, Ullah S, Chen X Q and Bauer E 2019 Nature 576 85 13 Zhou W X and Chen K Q 2015 Sci. Rep. 4 7150 14 Chen X K, Liu J, Peng Z H, Du D and Chen K Q 2017 Appl. Phys. Lett. 110 091907 15 Xie G F, Ding D and Zhang G 2018 Advances in Physics: X 3 1480417 16 Xie Z X, Liu J Z, Yu X, Wang H B, Deng Y X, Li K M and Zhang Y 2015 J. Appl. Phys. 117 114308 17 Xie Z X, Zhang Y, Yu X, Li K M and Chen Q 2014 J. Appl. Phys. 115 104309 18 Wu D, Cao X H, Jia P Z, Zeng Y J, Feng Y X, Tang L M, Zhou W X and Chen K Q 2020 Sci. China Phys. Mech. Astron. 63 276811 19 Gu X K, Wei Y J, Yin X B, Li B W and Yang R G 2018 Rev. Mod. Phys. 90 041002 20 Xu X F, Chen J and Li B W 2016 J. Phys.: Condens. Matter 28 483001 21 Wang J, Zhu L, Chen J, Li B and Thong JTL 2013 Adv. Mater. 25 6884 22 Liu Z Y, Wu X F and Luo T F 2017 2D Mater. 4 025002 23 Sun Y Y, Chen L, Cui L, Zhang Y W and Du X Z 2018 Computational Materials Science 148 176 24 Xu M, Wang H Y, Sun S S, Li H T, Li X M, Chen Y Z and Ni Y X 2020 Phys. Status Solidi B 257 1900205 25 Nguyen D K, Tran N T T, Chiu Y H and Lin M F 2019 Sci. Rep. 9 13746 26 Kishore M R A, Sjåstad A O and Ravindran P 2019 Carbon 141 50 27 Andriotis A N, Richter E and Menon M 2016 Phys. Rev. B 93 081413 28 Shukla V K, Araujo R B, Jena N K and Ahuja R 2017 Nano Energy 41 251 29 Singh D, Gupta S K, Sonvane Y, Hussain T and Ahuja R 2018 Phys. Chem. Chem. Phys. 20 21716 30 Singh D, Gupta S K, Sonvane Y and Ahuja R 2017 International Journal of Hydrogen Energy 42 22942 31 Singh D, Chakraborty S and Ahuja R 2019 ACS Applied Energy Materials 2 8441 32 Yeoh K H, Yoon T L, Ong D S, Lim T L and Abdullahi Y Z 2017 Phys. Chem. Chem. Phys. 19 25786 33 Kresse G and Furthmu\"uller J 1996 Phys. Rev. B 54 11169 34 He Y, Zhang M, Shi J J, Cen Y L and Wu M 2019 J. Phys. Chem. C 123 12781 35 Deng T Q, Yong X, ShiW, Gan C K, LiW, Hippalgaonkar K, Zheng J C, Wang X B, Yang S W, Wang J S and Wu G 2019 Adv. Electron. Mater. 5 1800892 36 Zhou W X, Wu D, Xie G F, Chen K Q and Zhang G 2020 ACS Omega 5 5796 37 Madsen G K and Singh D J 2006 Comput. Phys. Commun. 175 67 38 Hung N T, Nugraha A R T, Hasdeo E H, Dresselhaus M S and Saito R 2015 Phys. Rev. B 92 165426 39 Maurya V and Joshi K B 2019 J. Alloys Compd. 779 971 40 Zhu X L, Liu P F, Zhang J R, Zhang P, Zhou W X, Xie G F and Wang B T 2019 Nanoscale 11 19923 41 Madsen G K H and Singh D J 2006 Computer Physics Communications 175 67 42 Wang J, Xie F, Cao X H, An S C, Zhou W X, Tang L M and Chen K Q 2017 Sci. Rep. 7 41418 43 Gandi A N, Alshareef H N and Schwingenschl\"ogl U 2016 Chemistry of Materials 28 1647 44 Zhou W X and Chen K Q 2015 Sci. Rep. 5 15070 45 Zhang Q Q, Jia P Z, Chen X K, Zhou W X and Chen K Q 2020 J. Phys.: Condens. Matter 32 305301 46 Gu X K and Yang R G 2014 Appl. Phys. Lett. 105 131903 47 Klemens P G 2000 J. Wide Bandgap Mater. 7 332 48 Morelli D T, Heremans J P and Slack G A 2002 Phys. Rev. B 66 195304 49 Chen X K and Chen K Q 2020 J. Phys.: Condes. Matter 32 153002 50 Mahida H R, Singh D, Sonvane Y, Thakor P B, Ahuja R and Gupta S K 2019 J. Appl. Phys. 126 233104 51 Peng B, Zhang D Q, Zhang H, Shao H Z, Ni G, Zhu Y Y and Zhu H Y 2017 Nanoscale 9 7397 52 Wu J, Chen Y B, Wu J Q and Hippalgaonkar K 2018 Adv. Electron. Mater. 4 1800248 53 Snyder G J and Toberer E S 2008 Nat. Mater. 7 105 54 Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D and Snyder G J 2011 Nature 473 66 55 Zhao, L D, Dravid V P and Kanatzidis M G 2014 Energy Environ. Sci. 7 251 56 Yu J B, Li T W and Sun Q 2019 J. Appl. Phys. 125 205111 57 Kumar S and Schwingenschl\"ogl U 2016 Phys. Rev. B 94 035405 58 Yu J B, Li, T W, Nie G, Zhang B P and Sun Q 2019 Nanoscale 11 10306 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|