Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 037304    DOI: 10.1088/1674-1056/abd163
Special Issue: SPECIAL TOPIC — Phononics and phonon engineering
SPECIAL TOPIC—Phononics and phonon engineering Prev   Next  

Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms

Cheng-Wei Wu(吴成伟)1, Changqing Xiang(向长青)2, Hengyu Yang(杨恒玉)1, Wu-Xing Zhou(周五星)1,†, Guofeng Xie(谢国锋)1, Baoli Ou(欧宝立)1, and Dan Wu(伍丹)3,
1 School of Materials Science and Engineering & Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China; 2 College of Information Science and Engineering, Jishou University, Jishou 416000, China; 3 School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114, China
Abstract  Using the first principles calculation and Boltzmann transport theory, we study the thermoelectric properties of Si2BN adsorbing halogen atoms (Si2BN-4X, $X=\textF$, Cl, Br, and I). The results show that the adsorption of halogen atoms can significantly regulate the energy band structure and lattice thermal conductivity of Si2BN. Among them, Si2BN-4I has the best thermoelectric performance, the figure of merit can reach 0.50 K at 300 K, which is about 16 times greater than that of Si2BN. This is because the adsorption of iodine atoms not only significantly increases the Seebeck coefficient due to band degeneracy, but also rapidly reduces the phonon thermal conductivity by enhancing phonon scattering. Our work proves the application potential of Si2BN-based crystals in the field of thermoelectricity and the effective method for metal crystals to open bandgaps by adsorbing halogens.
Keywords:  density functional theory      thermoelectric effects      transport properties      electronic structure  
Received:  30 September 2020      Revised:  04 December 2020      Accepted manuscript online:  08 December 2020
PACS:  71.15.-m (Methods of electronic structure calculations)  
  73.50.Lw (Thermoelectric effects)  
  74.25.F- (Transport properties)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074115, 11874145, and 51775183) and the Hunan Provincial Natural Science Fund of China (Grant No. 2018JJ2125).
Corresponding Authors:  Corresponding author. E-mail: Corresponding author. E-mail:   

Cite this article: 

Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹) Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms 2021 Chin. Phys. B 30 037304

1 Zeng Y J, Wu D, Cao X H, Zhou W X, Tang L M and Chen K Q 2020 Adv. Funct. Mater. 30 1903873
2 Pei Y Z, Wang H and Snyder G J 2012 Adv. Mater. 24 6125
3 Jiang P H, Liu H J, Cheng L, Fang D D, Zhang J, Wei J, Liang J H and Shi J 2017 Carbon 113 108
4 Zhou W X, Cheng Y, Chen K Q, Xie G F, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 1903829
5 Kovnir K and Toberer E S 2016 Chemistry of Materials 28 2463
6 Chetty R, Bali A and Mallik R C 2015 J. Mater. Chem. C 3 12364
7 Wu D, Cao X H, Chen S Z, Tang L M, Feng Y X, Chen K Q and Zhou W X 2019 J. Mater. Chem. A 7 19037
8 Zhou X Y, Yan Y C, Lu X, Zhu H T, Han X D, Chen G and Ren Z F 2018 Materials Today 21 974
9 Hatam-Lee S M, Rajabpour A and Volz S 2020 Carbon 161 816
10 Liang T, Zhang P, Yuan P, Zhai S P and Yang D G 2019 Nano Futures 3 015001
11 Wang X N and Tabarraei A 2016 Appl. Phys. Lett. 108 191905
12 Hinterleitner B, Knapp I, Poneder M, Shi Y P, M\"uller H, Eguchi G, Eisenmenger-Sittner G, St\"oger-Pollach M, Kakefuda Y, Kawamoto N, Guo Q, Baba T, Mori T, Ullah S, Chen X Q and Bauer E 2019 Nature 576 85
13 Zhou W X and Chen K Q 2015 Sci. Rep. 4 7150
14 Chen X K, Liu J, Peng Z H, Du D and Chen K Q 2017 Appl. Phys. Lett. 110 091907
15 Xie G F, Ding D and Zhang G 2018 Advances in Physics: X 3 1480417
16 Xie Z X, Liu J Z, Yu X, Wang H B, Deng Y X, Li K M and Zhang Y 2015 J. Appl. Phys. 117 114308
17 Xie Z X, Zhang Y, Yu X, Li K M and Chen Q 2014 J. Appl. Phys. 115 104309
18 Wu D, Cao X H, Jia P Z, Zeng Y J, Feng Y X, Tang L M, Zhou W X and Chen K Q 2020 Sci. China Phys. Mech. Astron. 63 276811
19 Gu X K, Wei Y J, Yin X B, Li B W and Yang R G 2018 Rev. Mod. Phys. 90 041002
20 Xu X F, Chen J and Li B W 2016 J. Phys.: Condens. Matter 28 483001
21 Wang J, Zhu L, Chen J, Li B and Thong JTL 2013 Adv. Mater. 25 6884
22 Liu Z Y, Wu X F and Luo T F 2017 2D Mater. 4 025002
23 Sun Y Y, Chen L, Cui L, Zhang Y W and Du X Z 2018 Computational Materials Science 148 176
24 Xu M, Wang H Y, Sun S S, Li H T, Li X M, Chen Y Z and Ni Y X 2020 Phys. Status Solidi B 257 1900205
25 Nguyen D K, Tran N T T, Chiu Y H and Lin M F 2019 Sci. Rep. 9 13746
26 Kishore M R A, Sjåstad A O and Ravindran P 2019 Carbon 141 50
27 Andriotis A N, Richter E and Menon M 2016 Phys. Rev. B 93 081413
28 Shukla V K, Araujo R B, Jena N K and Ahuja R 2017 Nano Energy 41 251
29 Singh D, Gupta S K, Sonvane Y, Hussain T and Ahuja R 2018 Phys. Chem. Chem. Phys. 20 21716
30 Singh D, Gupta S K, Sonvane Y and Ahuja R 2017 International Journal of Hydrogen Energy 42 22942
31 Singh D, Chakraborty S and Ahuja R 2019 ACS Applied Energy Materials 2 8441
32 Yeoh K H, Yoon T L, Ong D S, Lim T L and Abdullahi Y Z 2017 Phys. Chem. Chem. Phys. 19 25786
33 Kresse G and Furthmu\"uller J 1996 Phys. Rev. B 54 11169
34 He Y, Zhang M, Shi J J, Cen Y L and Wu M 2019 J. Phys. Chem. C 123 12781
35 Deng T Q, Yong X, ShiW, Gan C K, LiW, Hippalgaonkar K, Zheng J C, Wang X B, Yang S W, Wang J S and Wu G 2019 Adv. Electron. Mater. 5 1800892
36 Zhou W X, Wu D, Xie G F, Chen K Q and Zhang G 2020 ACS Omega 5 5796
37 Madsen G K and Singh D J 2006 Comput. Phys. Commun. 175 67
38 Hung N T, Nugraha A R T, Hasdeo E H, Dresselhaus M S and Saito R 2015 Phys. Rev. B 92 165426
39 Maurya V and Joshi K B 2019 J. Alloys Compd. 779 971
40 Zhu X L, Liu P F, Zhang J R, Zhang P, Zhou W X, Xie G F and Wang B T 2019 Nanoscale 11 19923
41 Madsen G K H and Singh D J 2006 Computer Physics Communications 175 67
42 Wang J, Xie F, Cao X H, An S C, Zhou W X, Tang L M and Chen K Q 2017 Sci. Rep. 7 41418
43 Gandi A N, Alshareef H N and Schwingenschl\"ogl U 2016 Chemistry of Materials 28 1647
44 Zhou W X and Chen K Q 2015 Sci. Rep. 5 15070
45 Zhang Q Q, Jia P Z, Chen X K, Zhou W X and Chen K Q 2020 J. Phys.: Condens. Matter 32 305301
46 Gu X K and Yang R G 2014 Appl. Phys. Lett. 105 131903
47 Klemens P G 2000 J. Wide Bandgap Mater. 7 332
48 Morelli D T, Heremans J P and Slack G A 2002 Phys. Rev. B 66 195304
49 Chen X K and Chen K Q 2020 J. Phys.: Condes. Matter 32 153002
50 Mahida H R, Singh D, Sonvane Y, Thakor P B, Ahuja R and Gupta S K 2019 J. Appl. Phys. 126 233104
51 Peng B, Zhang D Q, Zhang H, Shao H Z, Ni G, Zhu Y Y and Zhu H Y 2017 Nanoscale 9 7397
52 Wu J, Chen Y B, Wu J Q and Hippalgaonkar K 2018 Adv. Electron. Mater. 4 1800248
53 Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
54 Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D and Snyder G J 2011 Nature 473 66
55 Zhao, L D, Dravid V P and Kanatzidis M G 2014 Energy Environ. Sci. 7 251
56 Yu J B, Li T W and Sun Q 2019 J. Appl. Phys. 125 205111
57 Kumar S and Schwingenschl\"ogl U 2016 Phys. Rev. B 94 035405
58 Yu J B, Li, T W, Nie G, Zhang B P and Sun Q 2019 Nanoscale 11 10306
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[6] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[7] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[8] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[9] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[10] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[11] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[12] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[13] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[14] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[15] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
No Suggested Reading articles found!