Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 088105    DOI: 10.1088/1674-1056/19/8/088105
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Electrical resistance response of polyaniline films to water, ethanol, and nitric acid solution

Yin Hong-Xing(尹红星), Li Meng-Meng(李蒙蒙), Yang He(杨贺), Long Yun-Ze(龙云泽), and Sun Xin(孙欣)
College of Physics Science, Qingdao University, Qingdao 266071, China
Abstract  This paper reports on electrical resistance vs. aging time for the response of polyaniline films under exposure to water, ethanol and nitric acid (HNO3) solution. Camphor sulfonic acid-doped polyaniline films were prepared by a "doping-dedoping-redoping" method, the morphology and microstructures of the films were characterized by a scanning electron microscope and an x-ray diffractometer, the electrical resistance was measured by a four-probe method. It was found that a lower amount of water molecules infiltrating the film can decrease the film's resistance possibly due to an enhancement of charge carrier transfer between polyaniline chains, whereas excessive water molecules can swell inter-chain distances and result in a quick increase of resistance. The resistance of the film under exposure to ethanol increases and becomes much larger than the original value. However, HNO3 solution can decrease the film's resistance sharply possibly owing to doping effect of protonic acid. These results can help to understand the conduction mechanism in polyaniline films, and also indicate that the films have potential application in chemical sensors.
Keywords:  polyaniline films      conducting polymers      conductivity  
Received:  03 November 2009      Revised:  22 January 2010      Accepted manuscript online: 
PACS:  73.61.Ph (Polymers; organic compounds)  
  61.41.+e (Polymers, elastomers, and plastics)  
  61.72.S- (Impurities in crystals)  
  68.55.-a (Thin film structure and morphology)  
  81.05.Lg (Polymers and plastics; rubber; synthetic and natural fibers; organometallic and organic materials)  
Fund: Project supported by the Program for New Century Excellent Talents in University of China (Grant No. NCET-07-0472) and the National Natural Science Foundation of China (Grant Nos. 10604038 and 10910101081).

Cite this article: 

Yin Hong-Xing(尹红星), Li Meng-Meng(李蒙蒙), Yang He(杨贺), Long Yun-Ze(龙云泽), and Sun Xin(孙欣) Electrical resistance response of polyaniline films to water, ethanol, and nitric acid solution 2010 Chin. Phys. B 19 088105

[1] Chiang C K, Fincher C R, Park Y W, Heeger A J, Shirakawa H, Louis E J, Gau S C and MacDiarmid A G 1977 Phys. Rev. Lett. 39 1098
[2] Liu X J, Gao K, Li Y, Wei J H and Xie S J 2007 Chin. Phys. 16 2091
[3] Yun D Q, Feng W, Wu H C, Liu X Z and Qiang J F 2010 Chin. Phys. B 19 017304
[4] Guo L, Liang L Y, Chen C, Wang M T, Kong M G and Wang K J 2007 it Acta Phys. Sin. 56 4270 (in Chinese)
[5] Long Y Z, Xiao H M, Chen Z J, Wan M X, Jin A Z and Gu C Z 2004 Chin. Phys. 13 1918
[6] Long Y Z, Duvail J L, Wang Q T, Li M M and Gu C Z 2009 J. Mater. Res. 24 3018
[7] Li M M, Long Y Z, Tan J S, Yin H X, Sui W M and Zhang Z M 2010 it Chin. Phys. B 19 028102
[8] Ivanov I, Gherman B F and Yaron D 2001 Synth. Met. 116 111
[9] Long Y Z, Yin Z H, Li M M, Gu C Z, Duvail J L, Jin A Z and Wan M X 2009 Chin. Phys. B 18 2514
[10] Feng W, Huang K and Wan M X 2005 Chin. Phys. 14 306
[11] Tang Q W, Wu J H, Sun H, Lin J M, Fan S J and Hu D 2008 it Carbohydrate Polym. 74 215
[12] Li W P, Liu S H, Li C M and Duan Y P 2007 J. Funct. Mater. & Devices 13 345
[13] Yin Z H, Long Y Z, Huang K, Wan M X and Chen Z J 2009 Chin. Phys. B 18 298
[14] Long Y Z, Yin Z H, Hui W, Chen Z J and Wan M X 2008 Chin. Phys. B 17 2707
[15] Sambhu B, Dipak K, Nikhil K S and Joong H L 2009 Prog. Polym. Sci. 34 783
[16] Hitoshi Y, Tetsuo H and Noriyuki K 2006 Synth. Met. 156 1187
[17] Tan C K and Blackwood D J 2000 Sensor. Actuat. B 71 190
[18] Timofeeva O N, Lubentsov B Z, Sudakova Ye Z, Chernyshov D N and Khidekel M L 1991 Synth. Met. 40 111
[19] Lubentsov B, Timofeeva O, Saratovskikh S, Krinichnyi V, Pelekh A, Dmitrenko V and Khidekel M 1992 Synth. Met. 47 187
[20] Athawale A A, Bhagwat S V and Katre P P 2006 Sensor. Actuat. B 114 263
[21] Kahol P K, Dyakonov A J and McCormick B J 1997 Synth. Met. 89 17
[22] Pinto N J, Shah P D, Kahol P K and McCormick B J 1996 it Phys. Rev. B 53 52
[23] Tarachiwin L, Kiattibutr P, Ruangchuay L, Sirivat A and Schwank J 2002 Synth. Met. 129 303
[24] Zhou Y, Long Y Z, Chen Z J, Zhang Z M and Wan M X 2005 it Acta Phys. Sin. 54 228 (in Chinese)
[25] Bai H and Shi G Q 2007 Sensors 7 267
[26] Choudhury A 2009 Sensor. Actuat. B 138 318
[27] Li P, Li Y, Hong L J, Chen Y S and Yang M J 2009 Mater. Chem. Phys. 115 395
[28] Li S, Li F L, Zhou S M, Wang P, Chen K and Du Z L 2009 Chin. Phys. B 18 3985
[29] Verma D and Dutta V 2009 Sensor. Lett. 7 143
[30] Zhang T, Mubeen S, Yoo B Y, Myung N V and Deshusses M A 2009 it Nanotechnology 20 255501
[31] Li W G and Wan M X 1998 Synth. Met. 92 121
[32] Long Y Z, Chen Z J, Wang N L, Li J C and Wan M X 2004 it Physica B 344 82
[33] MacDiarmid A G, Chiang J C, Halpen M and Huang W S 1985 it Mol. Cryst. Liq. Cryst. 121 173
[34] Cao Y, Smith P and Heeger A J 1992 Synth. Met. 48 91
[35] Li Q M, Cruz L and Phillips P 1993 Phys. Rev. B 47 1840
[36] Kaiser A B 2001 Adv. Mater. 13 927
[37] Long Y Z, Chen Z J, Zhang Z M, Wan M X, Zheng P and Wang N L 2003 Acta Phys. Sin. 52 175 (in Chinese)
[38] Jain S, Chakane S, Samui A B, Krishnamurthy V N and Bhoraskar S V 2003 Sensor. Actuat. B 96 124
[39] Ruangchuay L, Sirivat A and Schwank J 2004 Synth. Met. 140 15
[40] MacDiarmid A G, Chiang J C, Richter A F and Epstein A J 1987 Synth. Met. 18 285
[41] Huang W S, Humphrey B D and MacDiarmid A G 1986 J. Chem. Soc. Faraday Trans. 82 2385
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[3] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[4] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[5] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[6] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[7] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[8] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[9] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[10] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[11] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[12] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[13] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[14] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
[15] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
No Suggested Reading articles found!