|
|
The relativistic density functional investigations on geometries, electronic and magnetic properties of Irn (n=1–13) clusters |
Guo Ping(郭平)a)†, Zheng Ji-Ming(郑继明)b), Zhao Pei(赵佩)a), Zheng Lin-Lin(郑琳琳)b), and Ren Zhao-Yu(任兆玉)b)‡ |
a Physics Department, Northwest University, Xi'an 710069, China; b Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China |
|
|
Abstract The Irn (n=1–13) clusters are studied using the relativistic density functional method with generalized gradient approximation. A series of low-lying structures with different spin multiplicities have been considered. It is found that all the lowest-energy Irn (n=4–13) geometries prefer non-compact structures rather than compact structure growth pattern. And the cube structure is a very stable cell for the lowest-energy Irn (n > 8) clusters. The second-order difference of energy, the vertical ionization potentials, the electron affinities and the atomic average magnetic moments for the lowest-energy Irn geometries all show odd–even alternative behaviours.
|
Received: 27 September 2009
Revised: 30 December 2009
Accepted manuscript online:
|
PACS:
|
36.40.Cg
|
(Electronic and magnetic properties of clusters)
|
|
31.15.E-
|
|
|
32.10.Dk
|
(Electric and magnetic moments, polarizabilities)
|
|
32.10.Hq
|
(Ionization potentials, electron affinities)
|
|
36.40.Mr
|
(Spectroscopy and geometrical structure of clusters)
|
|
Fund: Project supported by the National Natural Science Foundation of China for Young Scientists (Grant No. 10904123), the National Natural Science Foundation of China (Grant Nos. 10774118 and 10974152), and the Special Item Foundation of Educational Committee of Shaanxi Province, China (Grant No. 08JK471). |
Cite this article:
Guo Ping(郭平), Zheng Ji-Ming(郑继明), Zhao Pei(赵佩), Zheng Lin-Lin(郑琳琳), and Ren Zhao-Yu(任兆玉) The relativistic density functional investigations on geometries, electronic and magnetic properties of Irn (n=1–13) clusters 2010 Chin. Phys. B 19 083601
|
[1] |
Alonso J A 2000 Chem. Rev. 100 637
|
[2] |
Baletto F and Ferrando R 2005 Rev. Mod. Phys. 77 371
|
[3] |
Luo Y H, Ren F Z, Wang Y X, Wei S K and Zhang G B 2009 Chin. Phys. B 18 1491
|
[4] |
Lei X L, Luo Y H, Wang X M and Zhu H J 2009 Chin. Phys. B 18 2264
|
[5] |
Feng C J, Xue Y H, Zhang X C and Zhang X Y 2009 Chin. Phys. B 18 1436
|
[6] |
Bobadova-Parvanova P, Jackson K A, Srinivas S and Horoi M 2005 J. Chem. Phys. 122 014310
|
[7] |
Wang J L, Wang G H and Zhao J J 2002 Phys. Rev. B 66 035418
|
[8] |
Kumar V and Kawazoe Y 2002 Phys. Rev. B 65 125403
|
[9] |
Bucher J P, Doaglass D C and Bloomfield L A 1991 Phys. Rev. Lett. 66 3052
|
[10] |
Deng K M, Yang J L, Xiao C Y and Wang K L 1996 Phys. Rev. B 54 2191
|
[11] |
Bae Y C, Osanai H, Kumar V and Kawazoe Y 2004 Phys. Rev. B 70 195413
|
[12] |
Reuse F A, Khanna S N and Bernel S 1995 Phys. Rev. B 52 R11650
|
[13] |
Zhao W J, Lei X L, Yan Y L,Yang Z and Luo Y H 2007 Acta Phys. Sin. 56 5209 (in Chinese)
|
[14] |
Baldo M A, Thompson M B and Forrest S R 2000 Nature (London) 403 750
|
[15] |
Habar, Ouannasser S, Stauffer L, Dreyss'e H and Wille L T 1996 Surf. Sci. 5 352
|
[16] |
Xu Z, Xiao F S, Purnell S K, Alexeev O, Kawi S, Deutsch S E and Gates B C 1994 Nature 372 346
|
[17] |
Maloncy S D, van Zon F B M, Kelley M J, Koningsbegger D C and Gates B C 1990 Caral. Lett. 5 161
|
[18] |
Xiao F S, Xu Z, Alexeev O and Gates B C 1995 J. Phys. Chem. 99 1548
|
[19] |
Hay P J and Wadt W R 1985 J. Chem. Phys. 82 299
|
[20] |
Feng J N, Huang X R and Li Z X 1997 Chem. Phys. Lett. 276 334
|
[21] |
Zhao A, Jensoft R E and Gates B C 1997 J. Cata. 169 263
|
[22] |
Pergola R D, Garlaschelli L, Manassero M and Sansoni M 1999 J. Clust. Sci. 10 109
|
[23] |
King R B 2002 Inorganica Chimica Acta 334 34
|
[24] |
Pawluk T, Hirata Y and Wang L C 2005 J. Phys. Chem. B 109 20817
|
[25] |
Vosko S H, Wilk L and Nusair M 1980 Can. J. Phys. 58 1200
|
[26] |
Becke A D 1988 Phys. Rev. A 38 3098
|
[27] |
Perdew J P 1986 Phys. Rev. B 33 8822
|
[28] |
Perdew J P 1986 Phys. Rev. B 34 7406
|
[29] |
Velde G Te and Baerends E J 1992 J. Comput. Phys. 99 84
|
[30] |
Lenthee E van, Bearends E J and Snijders J G 1994 J. Chem. Phys. 101 9783
|
[31] |
Lenthee E van, Snijders J G and Bearends E J 1996 J. Chem. Phys. 105 6505
|
[32] |
Wu Z J, Han B, Dai Z W and Jin P C 2005 Chem. Phys. Lett. 403 367
|
[33] |
Dai D G, Liao M Z and Balasubramanian K 1996 Chem. Phys. Lett. 249 141
|
[34] |
Venturelli A and Rauchfuss T B 1994 J. Am. Chem. Soc. 116 4824
|
[35] |
Jules J L and Lombardi J R 2003 J. Phys. Chem. A 107 1268
|
[36] |
Miedema A R and Gingerich K A 1979 J. Phys. B: At. Mol. Phys. 12 2081 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|