Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 077307    DOI: 10.1088/1674-1056/19/7/077307
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Kondo transport through a quantum dot coupled with side quantum-dot structures

Jiang Zhao-Tan(江兆潭)†ger
Department of Physics, Beijing Institute of Technology, Beijing 100081, China; b Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
Abstract  This paper investigates Kondo transport properties in a quadruple quantum dot (QD) based on the slave-boson mean field theory and the non-equilibrium Green's function. In the quadruple QD structure one Kondo-type QD sandwiched between two leads is side coupled to two separate QD structures: a single-QD atom and a double-QD molecule. It shows that the conductance valleys and peaks always appear in pairs and by tuning the energy levels in three side QDs, the one-, two-, or three-valley conductance pattern can be obtained. Furthermore, it finds that whether the valley and the peak can appear is closely dependent on the specific values of the interdot couplings and the energy level difference between the two QDs in the molecule. More interestingly, an extra novel conductance peak can be produced by the coexistence of the two different kinds of side QD structures.
Keywords:  quantum transport      Kondo effect      quantum dot  
Revised:  27 January 2010      Accepted manuscript online: 
PACS:  72.10.Fk (Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))  
  73.21.La (Quantum dots)  
  73.63.Kv (Quantum dots)  
Fund: Project supported by National Natural Science Foundation of China (Grant Nos. 10604005 and 10974015) and supported by Program for New Century Excellent Talents in University of China (Grant No. NCET-08-0044).

Cite this article: 

Jiang Zhao-Tan(江兆潭) Kondo transport through a quantum dot coupled with side quantum-dot structures 2010 Chin. Phys. B 19 077307

[1] Kondo J 1964 Prog. Theor. Phys. 32 37
[2] Ng T K and Lee P A 1988 Phys. Rev. Lett. 61 1768 bibitemQDs1 Goldhaber-Gordon D, Shtrikman H, Mahalu D, Abusch-Magder D, Meirav U and Kastner M A 1998 Nature 391 156. bibitemQDs2 Cronenwett S M, Oosterkamp T H and Kouwenhoven L P 1998 Science 281 540 bibitemQDs3 Van der Wiel W G, Franceschi S D, Fujisawa T, Elzerman J M, Tarucha S and Kouwenhoven L P 2000 Science 289 2105 bibitemQDs4 Sasaki S, Franceschi S D, Elzerman J M, van Der Wiel W G, Eto M, Tarucha S and Kouwenhoven L P 2000 Nature 405 764 bibitemQDs5 Ji Y, Heiblum M, Sprinzak D, Mahalu D and Shtrikman H 2000 Science 290 779 bibitemQDs6 Nordlander P, Pustilnik M, Meir Y, Wingreen N S and Langreth D C 1999 Phys. Rev. Lett. 83 808 bibitemQDs7 Zhang P, Xue Q K, Wang Y and Xie X C 2002 Phys. Rev. Lett. 89 286803 bibitemQDs7 Luo H G, Xiang T, Wang X Q, Su Z B and Yu L 2004 Phys. Rev. Lett. 92 256602 bibitemQDs8 Hu H, Zhang G M and Yu L 2001 Phys. Rev. Lett. 86 5558 bibitemQDs9 Sun Q F, Guo H and Lin T H 2001 Phys. Rev. Lett. 87 176601 bibitemQDs10 Jayaprakash C, Krishna-murthy H R and Wilkins J W 1981 Phys. Rev. Lett. 47 737 bibitemQDs11 Jones B A, Varma C M and Wilkins J W 1988 Phys. Rev. Lett. 61 125 bibitemQDs12 Jeong H, Chang A M and Melloch M R 2001 Science 293 2221 bibitemQDs13 Craig N J, Taylor J M, Lester E A, Marcus C M, Hanson M P and Gossard A C 2004 Science 304 565 bibitemQDs14 Vavilov M G and Glazman L I 2005 Phys. Rev. Lett. 94 086805 bibitemQDs15 Simon P, L'opez R and Oreg Y 2005 Phys. Rev. Lett. 92 086602 bibitemCPB1 Chen M L and Wang S J 2007 Chin. Phys. 16 2096 bibitemCPB2 Wu S Q, He Z, Yan C H, Chen X W and Sun W L 2006 Acta Phys. Sin. 55 1413 bibitemCPB3 Song H Z, Zhang P, Duan S Q and Zhao X G 2006 Chin. Phys. 15 2130 bibitemCPB4 Dong Q R 2008 Chin. Phys. B 17 1400 bibitemCPB5 Yin J W, Xiao J L, Yu Y F and Wang Z W 2009 Chin. Phys. B 18 446 bibitemCPB6 Hou T, Wu S Q, Bi A H, Yang F B, Chen J F and Fan M 2009 Chin. Phys. B 18 783 bibitemCPB7 Sun K W and Xiong S J 2006 Chin. Phys. 15 828 bibitemCPB8 Li S S and Xia J B 2007 Chin. Phys. 16 1 bibitemCPB9 Jiang Z T, You J Q, Bian S B and Zheng H Z, 2002 Phys. Rev. B 66 205306
[28] Jiang Z T and Sun Q F, 2007 J. Phys.: Condens. Matter 19 156213 bibitemwire1 Kang K, Cho S Y, Kim J J and Shin S C 2001 Phys. Rev. B 63 113304 bibitemTorio Torio M E, Hallberg K, Ceccatto A H and Proetto C R 2002 Phys. Rev. B 65 085302 bibitemwire2 Orellana P A, Domn'higuez-Adame F, G'oez I and Ladr'ode Guevara M L 2003 Phys. Rev. B 67 085321 bibitemKob Kobayashi K, Aikawa H, Sano A, Katsumoto S and Iye Y 2004 Phys. Rev. B 70 035319 bibitemsato Sato M, Aikawa H, Kobayashi K, Katsumoto S and Iye Y 2005 Phys. Rev. Lett. 95 066801 bibitemQD1 G"uccl"u A D, Sun Q F and Guo H 2003 Phys. Rev. B 68 245323 bibitemQD2 Wu B H, Gao J C and Ahn K H 2005 Phys. Rev. B 72 165313 bibitemQD3 Tanamoto T and Nishi Y 2007 Phys. Rev. B 76 155319 bibitemQD4 Trocha P and Barna's J 2008 Phys. Rev. B 78 075424 bibitemKK1 Aguado R and Langreth D C 2000 Phys. Rev. Lett. 85 1946 bibitemBook1Datta S 2004 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) bibitemMeir Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512
[41] Jauho A P, Wingreen N S and Meir Y 1994 Phys. Rev. B 50 5528 bibitemjiang Jiang Z T, Sun Q F and Wang Y P 2005 Phys. Rev. B 72 045332
[43] Jiang Z T and Han Q Z 2008 Phys. Rev. B 78 035307 endfootnotesize
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[7] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8
Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康). Chin. Phys. B, 2022, 31(6): 067104.
[14] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[15] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
No Suggested Reading articles found!