CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Kondo transport through a quantum dot coupled with side quantum-dot structures |
Jiang Zhao-Tan(江兆潭)†ger |
a Department of Physics, Beijing Institute of Technology, Beijing 100081, China; b Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA |
|
|
Abstract This paper investigates Kondo transport properties in a quadruple quantum dot (QD) based on the slave-boson mean field theory and the non-equilibrium Green's function. In the quadruple QD structure one Kondo-type QD sandwiched between two leads is side coupled to two separate QD structures: a single-QD atom and a double-QD molecule. It shows that the conductance valleys and peaks always appear in pairs and by tuning the energy levels in three side QDs, the one-, two-, or three-valley conductance pattern can be obtained. Furthermore, it finds that whether the valley and the peak can appear is closely dependent on the specific values of the interdot couplings and the energy level difference between the two QDs in the molecule. More interestingly, an extra novel conductance peak can be produced by the coexistence of the two different kinds of side QD structures.
|
Revised: 27 January 2010
Accepted manuscript online:
|
PACS:
|
72.10.Fk
|
(Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))
|
|
73.21.La
|
(Quantum dots)
|
|
73.63.Kv
|
(Quantum dots)
|
|
Fund: Project supported by National Natural Science Foundation of China (Grant Nos. 10604005 and 10974015) and supported by Program for New Century Excellent Talents in University of China (Grant No. NCET-08-0044). |
Cite this article:
Jiang Zhao-Tan(江兆潭) Kondo transport through a quantum dot coupled with side quantum-dot structures 2010 Chin. Phys. B 19 077307
|
[1] |
Kondo J 1964 Prog. Theor. Phys. 32 37
|
[2] |
Ng T K and Lee P A 1988 Phys. Rev. Lett. 61 1768 bibitemQDs1 Goldhaber-Gordon D, Shtrikman H, Mahalu D, Abusch-Magder D, Meirav U and Kastner M A 1998 Nature 391 156. bibitemQDs2 Cronenwett S M, Oosterkamp T H and Kouwenhoven L P 1998 Science 281 540 bibitemQDs3 Van der Wiel W G, Franceschi S D, Fujisawa T, Elzerman J M, Tarucha S and Kouwenhoven L P 2000 Science 289 2105 bibitemQDs4 Sasaki S, Franceschi S D, Elzerman J M, van Der Wiel W G, Eto M, Tarucha S and Kouwenhoven L P 2000 Nature 405 764 bibitemQDs5 Ji Y, Heiblum M, Sprinzak D, Mahalu D and Shtrikman H 2000 Science 290 779 bibitemQDs6 Nordlander P, Pustilnik M, Meir Y, Wingreen N S and Langreth D C 1999 Phys. Rev. Lett. 83 808 bibitemQDs7 Zhang P, Xue Q K, Wang Y and Xie X C 2002 Phys. Rev. Lett. 89 286803 bibitemQDs7 Luo H G, Xiang T, Wang X Q, Su Z B and Yu L 2004 Phys. Rev. Lett. 92 256602 bibitemQDs8 Hu H, Zhang G M and Yu L 2001 Phys. Rev. Lett. 86 5558 bibitemQDs9 Sun Q F, Guo H and Lin T H 2001 Phys. Rev. Lett. 87 176601 bibitemQDs10 Jayaprakash C, Krishna-murthy H R and Wilkins J W 1981 Phys. Rev. Lett. 47 737 bibitemQDs11 Jones B A, Varma C M and Wilkins J W 1988 Phys. Rev. Lett. 61 125 bibitemQDs12 Jeong H, Chang A M and Melloch M R 2001 Science 293 2221 bibitemQDs13 Craig N J, Taylor J M, Lester E A, Marcus C M, Hanson M P and Gossard A C 2004 Science 304 565 bibitemQDs14 Vavilov M G and Glazman L I 2005 Phys. Rev. Lett. 94 086805 bibitemQDs15 Simon P, L'opez R and Oreg Y 2005 Phys. Rev. Lett. 92 086602 bibitemCPB1 Chen M L and Wang S J 2007 Chin. Phys. 16 2096 bibitemCPB2 Wu S Q, He Z, Yan C H, Chen X W and Sun W L 2006 Acta Phys. Sin. 55 1413 bibitemCPB3 Song H Z, Zhang P, Duan S Q and Zhao X G 2006 Chin. Phys. 15 2130 bibitemCPB4 Dong Q R 2008 Chin. Phys. B 17 1400 bibitemCPB5 Yin J W, Xiao J L, Yu Y F and Wang Z W 2009 Chin. Phys. B 18 446 bibitemCPB6 Hou T, Wu S Q, Bi A H, Yang F B, Chen J F and Fan M 2009 Chin. Phys. B 18 783 bibitemCPB7 Sun K W and Xiong S J 2006 Chin. Phys. 15 828 bibitemCPB8 Li S S and Xia J B 2007 Chin. Phys. 16 1 bibitemCPB9 Jiang Z T, You J Q, Bian S B and Zheng H Z, 2002 Phys. Rev. B 66 205306
|
[28] |
Jiang Z T and Sun Q F, 2007 J. Phys.: Condens. Matter 19 156213 bibitemwire1 Kang K, Cho S Y, Kim J J and Shin S C 2001 Phys. Rev. B 63 113304 bibitemTorio Torio M E, Hallberg K, Ceccatto A H and Proetto C R 2002 Phys. Rev. B 65 085302 bibitemwire2 Orellana P A, Domn'higuez-Adame F, G'oez I and Ladr'ode Guevara M L 2003 Phys. Rev. B 67 085321 bibitemKob Kobayashi K, Aikawa H, Sano A, Katsumoto S and Iye Y 2004 Phys. Rev. B 70 035319 bibitemsato Sato M, Aikawa H, Kobayashi K, Katsumoto S and Iye Y 2005 Phys. Rev. Lett. 95 066801 bibitemQD1 G"uccl"u A D, Sun Q F and Guo H 2003 Phys. Rev. B 68 245323 bibitemQD2 Wu B H, Gao J C and Ahn K H 2005 Phys. Rev. B 72 165313 bibitemQD3 Tanamoto T and Nishi Y 2007 Phys. Rev. B 76 155319 bibitemQD4 Trocha P and Barna's J 2008 Phys. Rev. B 78 075424 bibitemKK1 Aguado R and Langreth D C 2000 Phys. Rev. Lett. 85 1946 bibitemBook1Datta S 2004 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) bibitemMeir Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512
|
[41] |
Jauho A P, Wingreen N S and Meir Y 1994 Phys. Rev. B 50 5528 bibitemjiang Jiang Z T, Sun Q F and Wang Y P 2005 Phys. Rev. B 72 045332
|
[43] |
Jiang Z T and Han Q Z 2008 Phys. Rev. B 78 035307 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|