Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 077306    DOI: 10.1088/1674-1056/19/7/077306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A novel partial silicon on insulator high voltage LDMOS with low-k dielectric buried layer

Luo Xiao-Rong (罗小蓉)ab, Wang Yuan-Gang (王元刚)a, Deng Hao (邓浩)a, Florin Udreab
a State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China; b Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
Abstract  A novel partial silicon-on-insulator (PSOI) high voltage device with a low-k (relative permittivity) dielectric buried layer (LK PSOI) and its breakdown mechanism are presented and investigated by MEDICI. At a low k value the electric field strength in the dielectric buried layer (EI) is enhanced and a Si window makes the substrate share the vertical drop, resulting in a high vertical breakdown voltage; in the lateral direction, a high electric field peak is introduced at the Si window, which modulates the electric field distribution in the SOI layer; consequently, a high breakdown voltage (BV) is obtained. The values of EI and BV of LK PSOI with k= 2 on a 2 μm thick SOI layer over 1 μm thick buried layer are enhanced by 74% and 19%, respectively, compared with those of the conventional PSOI. Furthermore, the Si window also alleviates the self-heating effect.
Keywords:  silicon-on-insulator      low k dielectric      electric field      breakdown voltage  
Revised:  01 February 2010      Accepted manuscript online: 
PACS:  85.30.Tv (Field effect devices)  
  85.50.-n (Dielectric, ferroelectric, and piezoelectric devices)  
  77.22.Ch (Permittivity (dielectric function))  
  77.22.Jp (Dielectric breakdown and space-charge effects)  
Fund: Projects supported by the National Natural Science Foundation of China (Grant Nos. 60806025 and 60976060), the National Laboratory of Analog Integrated Circuit (Grant No. 9140C0903070904), and the Youth Teacher Foundation of the University of Electronic Science and Technology of China (Grant No. jx0721).

Cite this article: 

Luo Xiao-Rong (罗小蓉), Wang Yuan-Gang (王元刚), Deng Hao (邓浩), Florin Udrea A novel partial silicon on insulator high voltage LDMOS with low-k dielectric buried layer 2010 Chin. Phys. B 19 077306

[1] Nakagawa A, Yasuhara N and Baba Y 1991 IEEE Trans. Electron Devices bf38 1650
[2] Merchant S, Arnold E and Baumgart H 1991 Proc. IEEE Int. Symp. Power Semiconductor Devices and IC's (Bal-timore, MD, USA) p31
[3] Luo X R, Zhang B and Li Z J 2007 IEEE Electron Device Letters bf28 422
[4] Luo X R, Zhang B and Li Z J 2008 IEEE Electron Devices Letters bf29 1395
[5] Luo X R, Zhang B and Li Z J 2008 IEEE Trans. Electron Devices bf55 1756
[6] Luo X R, Lei T F, Wang Y G, Gao H M and Zhang W 2009 IEEE Electron Device Letters bf30 1093
[7] Funaki H, Yamaguchi Y and Hirayama K 1998 Proc.10th Int. Symp. Power Semiconductor Devices and IC's (Tokyo, Japan) p25
[8] Kapels H, Plikat R and Silber D 2000 Proc.10th Int. Symp. Power Semiconductor Devices and IC's (Toulouse. France) p205
[9] Hu S D, Li Z J and Zhang B 2009 Chin. Phys. B bf18 315
[10] Hu S D, Li Z J, Zhang B and Luo X R 2010 Chin. Phys. B bf19 037303
[11] Luo X R, Zhang B and Li Z J 2007 Solid-State Electron. bf51 493
[12] Delan A, Rennau M, Schulz S E and Gessner T 2003 Microelectronic Engineering bf70 280
[13] Udrea F, Milne W and Popescu A1997 Electron. Lett. bf33 907
[14] Tadikonda R, Hardikar S and Sankara N E M 2004 Solid-State Electron. bf48 1655
[15] Guo Y F, Fang J, Zhang B and Li Z J 2005 Chinese Journal of Semiconductors bf26 33
[16] Hoofman R J O M, Verheijden G J A M, Michelon J, Iacopi F and Travaly Y 2005 Microelectronic Engineering bf80 337
[17] Lee S and Park J W 1999 Journal Vacuum Science Technology A bf7 458
[18] Wang P F, Ding S J, Zhang W, Wang J T and Li W 2001 Microfabrication Technology bf1 30
[19] Shamiryan D, Abell T, F Iacopi and Maex K 2004 Materials Today bf7 34
[20] Lubguban J Seitob A Kurata Y, Inokuma T and Hasegawa S 1999 Thin Solid Films bf337 67
[21] Yun S M, Chang H Y, Kang M S and Choi C K 1999 Thin Solid Films bf341 109
[22] Bradbury D R, Piedmont C W T and Kamins T I 1985 US Patent No. 4522662
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[3] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[4] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[5] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[6] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[7] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[8] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[9] Effect of an electric field on dewetting transition of nitrogen-water system
Qi Feng(冯琦), Jiaxian Li(厉嘉贤), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军). Chin. Phys. B, 2022, 31(3): 036801.
[10] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[11] Impact of STI indium implantation on reliability of gate oxide
Xiao-Liang Chen(陈晓亮), Tian Chen(陈天), Wei-Feng Sun(孙伟锋), Zhong-Jian Qian(钱忠健), Yu-Dai Li(李玉岱), and Xing-Cheng Jin(金兴成). Chin. Phys. B, 2022, 31(2): 028505.
[12] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[13] Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅). Chin. Phys. B, 2022, 31(11): 117102.
[14] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[15] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
No Suggested Reading articles found!