Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 077501    DOI: 10.1088/1674-1056/19/7/077501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Paramagnetism in Cu-doped ZnO

Xu Qing-Yu(徐庆宇)a)†, Zheng Xiao-Hong(郑晓红)a), and Gong You-Pin(龚佑品) b)
a Department of Physics, Southeast University, Nanjing 211189, China; b Department of Materials Science and Engineering, Nanjing University, Nanjing 210008, China
Abstract  Zn0.98Cu0.02O powders are prepared by the sol—gel method. A small number of CuO impurity phases are observed by the x-ray diffraction, indicating the solubility of Cu in ZnO is less than 2 at.%. The Zn0.98Cu0.02O powders exhibit diamagnetism at 300 K and paramagnetism at 5 K. After subtracting the diamagnetic contribution of ZnO bulk and the paramagnetic contribution of defects, Cu ions exhibit weak paramagnetism. By codoping Cu with Co or Mn in ZnO, only paramagnetism is observed at room temperature.
Keywords:  diluted magnetic semiconductors      ZnO      paramagnetism      defects  
Received:  10 November 2009      Revised:  05 January 2010      Accepted manuscript online: 
PACS:  75.20.Ck (Nonmetals)  
  61.72.uj (III-V and II-VI semiconductors)  
  81.20.Ev (Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)  
  81.20.Fw (Sol-gel processing, precipitation)  
  64.75.-g (Phase equilibria)  
  75.50.Pp (Magnetic semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50802041), the National Key Projects for Basic Research of China (Grant No. 2010CB923404), and Southeast University.

Cite this article: 

Xu Qing-Yu(徐庆宇), Zheng Xiao-Hong(郑晓红), and Gong You-Pin(龚佑品) Paramagnetism in Cu-doped ZnO 2010 Chin. Phys. B 19 077501

[1] Ohno H 1998 Science 281 951
[2] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[3] Sato K and Katayama-Yoshida H 2000 Jpn. J. Appl. Phys. 39 L555
[4] Venkatesan M, Fitzgerald C B, Lunney J G and Coey J M D 2004 Phys. Rev. Lett. 93 177206
[5] Kittilstved K R, Norberg N S and Gamelin D R 2005 Phys. Rev. Lett. 94 147209
[6] Yu Z, Li X, Long X, Cheng X, Liu Y and Cao C 2009 Chin. Phys. B 18 3040
[7] Liu X, Zhang H, Zhang T, Chen B, Chen Z, Song L and Shi E 2008 Chin. Phys. B 17 1371
[8] Teng X, Yu W, Yang L, Hao Q, Zhang L, Xu H, Liu C and Fu G 2007 Chin. Phys. Lett. 24 1073
[9] Qiu D J, Feng C M, Feng A M and Wu H Z 2008 Chin. Phys. B 17 690
[10] Peng L, Zhang H, Wen Q, Song Y, Su H and Xiao J Q 2008 Chin. Phys. Lett. 25 1438
[11] Seshadri R 2005 Curr Opin Solid State Mater. Sci. 9 1
[12] Kaspar T C, Droubay T, Heald S M, Engelhard M H, Nachimuthu P and Chambers S A 2008 Phys. Rev. B 77 201303R
[13] Buchholz D B, Chang R P H, Song J H and Ketterson J B 2005 Appl. Phys. Lett. 87 082504
[14] Hou D L, Ye X J, Meng H J, Zhou H J, Li X L, Zhen C M and Tang G D 2007 Appl. Phys. Lett. 90 142502
[15] Xu Q, Schmidt H, Zhou S, Potzger K, Helm M, Hochmuth H, Lorenz M, Setzer A, Esquinazi P, Meinecke C and Grundmann M 2008 Appl. Phys. Lett. 92 082508
[16] Hong N H, Sakai J and BrizéV 2007 J. Phys.: Condens. Matter 19 036219
[17] Ran F, Tanemura M, Hayashi Y and Hihara T 2009 J. Cryst. Growth 311 4270
[18] Gao D Q, Xue D S, Xu Y, Yan Z J and Zhang Z H 2009 Electrochim. Acta 54 2392
[19] Zhou S, Potzger K, von Borany J, Gr"otzschel R, Skorupa W, Helm M and Fassbender J 2008 Phys. Rev. B 77 035209
[20] Xu Q, Zhou S and Schmidt H 2009 J. Alloys Compd. 487 665
[21] Kaspar T C, Doubay T, Heald S M, Nachimuthu P, Wang C M, Schutthanandan V, Johnson C A, Gamelin D R and Chambers S A 2008 New J. Phys. 10 055010
[22] Cao P, Zhao D X, Shen D Z, Zhang J Y, Zhang Z Z and Bai Y 2009 Appl. Surf. Sci. 255 3639
[23] Wei Y, Hou D, Qiao S, Zhen C and Tang G 2009 Physica B 404 2486
[24] Hong N H, BrizéV and Sakai J 2005 Appl. Phys. Lett. 86 082505 endfootnotesize
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[3] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[4] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[5] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[6] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[7] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[8] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[9] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[10] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[11] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[12] Effect of the codoping of N—H—O on the growth characteristics and defects of diamonds under high temperature and high pressure
Zhenghao Cai(蔡正浩), Bowei Li(李博维), Liangchao Chen(陈良超), Zhiwen Wang(王志文), Shuai Fang(房帅), Yongkui Wang(王永奎), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(10): 108104.
[13] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
No Suggested Reading articles found!