Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 074301    DOI: 10.1088/1674-1056/19/7/074301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Determination of the parameters of a linear-viscoelastic thin layer using the normally-incident ultrasonic waves

Yao Gui-Jin (姚桂锦)a, Lü Wei-Guo (吕卫国)b, Song Ruo-Long (宋若龙)b, Cui Zhi-Wen (崔志文)b, Zhang Xiang-Lin (张香林)a, Wang Ke-Xie (王克协)b
a The School of Communication Engineering, Jilin University, Changchun 130012, China; b The School of Physics, Jilin University, Changchun 130023, China
Abstract  This paper proposes a method of simultaneous determination of the four layer parameters (mass density, longitudinal velocity, the thickness and attenuation) of an immersed linear-viscoelastic thin layer by using the normally-incident reflected and transmitted ultrasonic waves. The analytical formula of the layer thickness related to the measured transmitted transfer functions is derived. The two determination steps of the four layer parameters are developed, in which acoustic impedance, time-of-flight and attenuation are first determined by the reflected transfer functions. Using the derived formula, it successively calculates and determines the layer thickness, longitudinal velocity and mass density by the measured transmitted transfer functions. According to the two determination steps, a more feasible and simplified measurement setups is described. It is found that only three signals (the reference waves, the reflected and transmitted waves) need to be recorded in the whole measurement for the determination of the four layer parameters. A study of the stability of the determination method against the experimental noises and the error analysis of the four layer parameters are made. This study lays the theoretical foundation of the practical measurement of a linear-viscoelastic thin layer.
Keywords:  ultrasonic determination      normally-incident reflected/transmitted waves      layer parameters      linear-viscoelastic thin layer  
Accepted manuscript online: 
PACS:  81.40.Jj (Elasticity and anelasticity, stress-strain relations)  
  62.65.+k (Acoustical properties of solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10534040 and 40674059) and the State Key Laboratory of Acoustics (IACAS) (Grant No. 200807).

Cite this article: 

Yao Gui-Jin (姚桂锦), Lü Wei-Guo (吕卫国), Song Ruo-Long (宋若龙), Cui Zhi-Wen (崔志文), Zhang Xiang-Lin (张香林), Wang Ke-Xie (王克协) Determination of the parameters of a linear-viscoelastic thin layer using the normally-incident ultrasonic waves 2010 Chin. Phys. B 19 074301

[1] Wan M, Jiang B and Cao W 1997 J. Acoust. Soc. Am. 101 626
[2] Zhang R, Wan M X and Cao W W 2001 IEEE Trans. Instrum. Meas. 50 1397
[3] Bescond C, Kruger S E, Lévesque D, Lima R S and Marple B R 2007 J. Therm. Spr. Tech. bf 16 238
[4] Zhang B X and Wang W L 2008 Acta Phys. Sin. 57 3613 (in Chinese)
[5] Lu Y G and Peng J X 2008 Acta Phys. Sin. 57 1030 (in Chinese)
[6] David K H and Michael S H 1992 J. Acoust. Soc. Am. 92 669
[7] Papadakis E P 1976 Physical Acoustic Principles and Methods (New York: Academic) p277--374
[8] He P 2000 J. Acoust. Soc. Am. 107 801
[9] He P and Zheng J 2001 Ultrason. 39 27
[10] Kinra V K and Lyer V R 1995 Ultrason. 33 95
[11] Kinra V K and Lyer V R 1995 Ultrason. 33 111
[12] Kinra V K and Zhu C 1993 J. Acoust. Soc. Am. 93 2454
[13] Kundu T 1992 J. Acoust. Soc. Am. 91 591
[14] Lavrentyev A and Rokhlin S I 2001 Ultrason. 39 211
[15] Wang L, Xie B and Rokhlin S I 2002 J. Acoust. Soc. Am. 111 2644
[16] Lavrentyev A and Rokhlin S I 1997 J. Acoust. Soc. Am. 102 3467
[17] Qian Z W, Shao D Y, Li X H and Wang D Z 1999 Chin. Phys. 8 27
[18] Yao G J, Cui Z W, Song R L and Wang K X 2007 J. Appl. Phys. 102 104903(1)
[19] Brekhovskikh L M 1982 Waves in Layered Elastic Medium (Beijing: Science Press) p14 (in Chinese)
[1] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[2] Ultra-low Young's modulus and high super-exchange interactions in monolayer CrN: A promising candidate for flexible spintronic applications
Yang Song(宋洋), Yan-Fang Zhang(张艳芳), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(4): 047105.
[3] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[4] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[5] Understanding the Li diffusion mechanism and positive effect of current collector volume expansion in anode free batteries
Yan Zhuang(庄严), Zheyi Zou(邹喆乂), Bo Lu(吕浡), Yajie Li(李亚捷), Da Wang(王达), Maxim Avdeev, Siqi Shi(施思齐). Chin. Phys. B, 2020, 29(6): 068202.
[6] Effect of elastic strain energy on grain growth and texture in AZ31 magnesium alloy by phase-field simulation
Ri He(何日), Ming-Tao Wang(王明涛), Jian-Feng Jin(金剑锋), Ya-Ping Zong(宗亚平). Chin. Phys. B, 2017, 26(12): 128201.
[7] Singular variation property of elastic constants of piezoelectric ceramics shunted to negative capacitance
Ji-Ying Hu(胡吉英), Zhao-Hui Li(李朝晖), Qi-Hu Li(李启虎). Chin. Phys. B, 2017, 26(12): 127702.
[8] Elastic strain response in the modified phase-field-crystal model
Wenquan Zhou(周文权), Jincheng Wang(王锦程), Zhijun Wang(王志军), Yunhao Huang(黄赟浩), Can Guo(郭灿), Junjie Li(李俊杰), Yaolin Guo(郭耀麟). Chin. Phys. B, 2017, 26(9): 090702.
[9] Investigations of thickness-shear mode elastic constant and damping of shunted piezoelectric materials with a coupling resonator
Ji-Ying Hu(胡吉英), Zhao-Hui Li(李朝晖), Yang Sun(孙阳), Qi-Hu Li(李启虎). Chin. Phys. B, 2016, 25(12): 127701.
[10] Molecular dynamics simulation on generalized stacking fault energies of FCC metals under preloading stress
Zhang Liang (张亮), Lü Cheng (吕程), Tieu Kiet, Zhao Xing (赵星), Pei Lin-Qing (裴林清), Michal Guillaume. Chin. Phys. B, 2015, 24(8): 088106.
[11] Effect of stress state on deformation and fracture of nanocrystalline copper:Molecular dynamics simulation
Zhang Liang (张亮), Lü Cheng (吕程), Kiet Tieu, Pei Lin-Qing (裴林清), Zhao Xing (赵星). Chin. Phys. B, 2014, 23(9): 098102.
[12] Phase-field study of the second phase particle effect on texture evolution of polycrystalline material
Lu Yan-Li (卢艳丽), Zhang Liu-Chao (张刘超), Zhou Ying-Ying (周影影), Chen Zheng (陈铮). Chin. Phys. B, 2014, 23(6): 069102.
[13] The structural, elastic, and electronic properties of ZrxNb1-xC alloys from first principle calculations
Sun Xiao-Wei (孙晓玮), Zhang Xin-Yu (张新宇), Zhang Su-Hong (张素红), Zhu Yan (朱岩), Wang Li-Min (王利民), Zhang Shi-Liang (张世良), Ma Ming-Zhen (马明臻), Liu Ri-Ping (刘日平). Chin. Phys. B, 2013, 22(10): 107105.
[14] The effects of strain and surface roughness scattering on the quasi-ballistic characteristics of a Ge nanowire p-channel field-effect transistor
Qin Jie-Yu (秦洁宇), Du Gang (杜刚), Liu Xiao-Yan (刘晓彦). Chin. Phys. B, 2013, 22(10): 107104.
[15] Thermodynamics and elastic properties of Ta from first-principles calculations
Li Qiang (李强), Huang Duo-Hui (黄多辉), Cao Qi-Long (曹启龙), Wang Fan-Hou (王藩侯), Cai Ling-Cang (蔡灵仓), Zhang Xiu-Lu (张修路), Jing Fu-Qian (经福谦). Chin. Phys. B, 2012, 21(12): 127102.
No Suggested Reading articles found!