Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 074218    DOI: 10.1088/1674-1056/19/7/074218
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Polarisation-sensitive four-wave mixing and soliton self-frequency shift effect in the highly birefringent photonic crystal fibre

Yuan Jin-Hui (苑金辉)a, Sang Xin-Zhu (桑新柱)a, Yu Chong-Xiu (余重秀)a, Xin Xiang-Jun (忻向军)a, Li Shu-Guang (李曙光)b, Zhou Gui-Yao (周桂耀)b, Hou Lan-Tian (侯蓝田)b
a Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Institute of Optical Communication and Optoelectronics, Beijing University of Posts and Telecommunications, Beijing 100876, China; b Institute of Infrared Optical Fibers and Sensors, College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
Abstract  By adjusting the polarisation state of the pump at 805 nm parallel to slow (x) and fast (y) axes of the highly birefringent photonic crystal fibre with zero dispersion wavelengths 790 nm and 750 nm, this paper demonstrates the efficient polarisation-sensitive four wave mixing involved in pump, anti-Stokes and Stokes signals and soliton self-frequency shift effects induced by the phase-matching between red-shifted solitons and blue-shifted dispersive waves. If the reduction of coupling efficiency to the circular pump laser mode or other circular fibres due to asymmetry of the core is neglected, more than 98% of the total input power is kept in a single linear polarisation. Controlled dispersion characteristic of the doublet of fundamental guided-modes results in achieving light field strongly confined in principal axes of photonic crystal fibre, and enhancing the corresponding nonlinear-optical process through the remarkable nonlinear birefringence.
Keywords:  highly birefringent photonic crystal fibre      four wave mixing      soliton self-frequency shift      phase-matching  
Accepted manuscript online: 
PACS:  42.81.Dp (Propagation, scattering, and losses; solitons)  
  42.81.Gs (Birefringence, polarization)  
  42.70.Qs (Photonic bandgap materials)  
  42.65.Hw (Phase conjugation; photorefractive and Kerr effects)  
Fund: Project partly supported by the National Basic Research Program (Grant Nos. 2010CB327605 and 2010CB328300), National High-Technology Research and Development Program of China (Grant Nos. 2007AA03Z447 and 2009AA01Z220), the National Natural Science Foundation of China (Grant No. 60807022), the Key Grant of Ministry of Education of China (Grant No. 109015) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070013001).

Cite this article: 

Yuan Jin-Hui (苑金辉), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀), Xin Xiang-Jun (忻向军), Li Shu-Guang (李曙光), Zhou Gui-Yao (周桂耀), Hou Lan-Tian (侯蓝田) Polarisation-sensitive four-wave mixing and soliton self-frequency shift effect in the highly birefringent photonic crystal fibre 2010 Chin. Phys. B 19 074218

[1] Ranka J K, Windeler R S and Stentz A J 2000 Opt. Lett. 25 796
[2] Birks T A, Mogilevstev D, Knight J C and Russell P S J 1999 IEEE Photon. Technol. Lett. 11 674
[3] Kano P, Barker D and Brio M 2008 J. Phys. D: Appl. Phys. 41 185106
[4] Akimov D A, Serebryannikov E E, Zheltikov A M, Schmitt M, Maksimenka R, Kiefer W, Dukel'skii K V, Shevandin V S and Kondrat'ev Yu N 2003 Opt. Lett. 28 1948
[5] Yan F P, Tong Z, Wei H, Pei L, Ning T G, Fu Y J, Zheng K, Wang L, Li Y F, Gong T R and Jian S S 2007 Chin. Phys. 16 1700
[6] Yan F P, Mao X Q, Wang L, Fu Y J, Wei H, Zheng K, Gong T R, Liu P, Tao P L and Jian S S 2009 Acta Phys. Sin. 58 6296 (in Chinese)
[7] Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L and Cundiff S T 2000 Science 288 635
[8] Hartl I, Li X D, Chudoba C, Rhanta R K, Ko T H, Fujimoto J G, Ranka J K and Windeler R S 2001 Opt. Lett. 26 608
[9] Paulsen H N, Hilligsoe K M, Thogersen J, Keiding S R and Larsen J J 2003 Opt. Lett. 28 1123
[10] Konorov S O and Zheltikov A M 2003 Opt. Express 11 2440
[11] Hansen T P, Broeng J, Libori S E B, Knudsen E, Bjarklev A, Jensen J R and Simonsen H 2001 IEEE Photon. Technol. Lett. 13 588
[12] Woli'nski T R, Ertman S, Czapla A, Lesiak P, Nowecka K and Doma'nski A W 2007 Meas. Sci. Technol. bf 18 3061
[13] Apolonski Povazay B, Unterhuber A, Drexler W, Wadsworth W J, Knight J C and Russell P S J 2002 J. Opt. Soc. Am. B 19 2165
[14] Yue Y, Kai G Y, Wang Z, Li Y, Zhang C S, Lu Y F, Sun T T, Jin L, Liu J G, Liu Y G, Yuan S Z and Dong X Y 2006 Opt. Commun. 268 46
[15] Hu M L, Wang C Y, Li Y F, Chai L and Zheltikov A M 2005 Opt. Express 13 5947
[16] Hu M L, Wang C Y, Li Y F, Wang Z, Chai L and Zheltikov A M 2005 IEEE Photon. Technol. Lett. 17 630
[17] Hu M L, Wang C Y, Chai L and Zheltikov A M 2004 Opt. Express 12 1932
[18] Laegsgaard J 2007 J. Opt. A: Pure Appl. Opt. 11 1105
[19] Lehtonen M, Genty G, Ludvigsen H and Kaivola M 2003 Appl. Phys. Lett. 82 2197
[20] Liu W H, Song X Z, Wang Y S, Liu H J, Zhao W, Liu X M, Peng Q J and Xu Z Y 2008 Acta Phys. Sin. 57 917 (in Chinese)
[21] Chen Y Z, Li Y Z, Qu G and Xu W C 2006 Acta Phys. Sin. 55 717 (in Chinese)
[22] Liu W H, Wang Y S, Liu H J, Duan Z L, Zhao W, Li Y F, Peng Q J and Xu Z Y 2006 Acta Phys. Sin. 55 1815 (in Chinese)
[23] Zhou G Y, Hou Z Y and Hou L T 2006 Appl. Opt. 45 4433
[24] White T P, Kuhlmey B T, McPhedran R C, Maystre D, Renversez G, de Sterke C M and Botten L C 2002 J. Opt. Soc. Am. B 19 2322
[25] Hu M L, Wang C Y, Song Y J, Li Y F, Chai L, Serebryannikov E E and Zheltikov A M 2006 Opt. Express 14 1189
[26] Karasawa N, Tada K and Ohmori H 2007 IEEE Photon. Technol. Lett. 19 1292
[27] Cherif R, Zghal M, Tartara L and Degiorgio V 2008 Opt. Express 16 2147
[28] Prodan L, Hagen R, Gross P, Arts R, Beigang R, Fallnich C, Schirmacher A, Kuipers L and Boller K J 2008 J. Phys. D: Appl. Phys. 41 135105
[1] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[2] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[3] Generation of tripartite Einstein-Podolsky-Rosen steering by cascaded nonlinear process
Yu Liu(刘瑜), Su-Ling Liang(梁素玲), Guang-Ri Jin(金光日), You-Bin Yu(俞友宾), Jian-Yu Lan(蓝建宇), Xiao-Bin He(何小斌), Kang-Xian Guo(郭康贤). Chin. Phys. B, 2020, 29(5): 050301.
[4] Broadband tunable Raman soliton self-frequency shift to mid-infrared band in a highly birefringent microstructure fiber
Wei Wang(王伟), Xin-Ying Bi(毕新英), Jun-Qi Wang(王珺琪), Yu-Wei Qu(屈玉玮), Ying Han(韩颖), Gui-Yao Zhou(周桂耀), Yue-Feng Qi(齐跃峰). Chin. Phys. B, 2016, 25(7): 074206.
[5] Strip silicon waveguide for code synchronization in all-optical analog-to-digital conversion based on a lumped time-delay compensation scheme
Sha Li(李莎), Zhi-Guo Shi(石志国), Zhe Kang(康哲), Chong-Xiu Yu(余重秀), Jian-Ping Wang(王建萍). Chin. Phys. B, 2016, 25(4): 044210.
[6] Optimizational 6-bit all-optical quantization with soliton self-frequency shift and pre-chirp spectral compression techniques based on photonic crystal fiber
Li Sha (李莎), Wang Jian-Ping (王建萍), Kang Zhe (康哲), Yu Chong-Xiu (余重秀). Chin. Phys. B, 2015, 24(8): 084212.
[7] Code synchronization based on lumped time-delay compensation scheme with a linearly chirped fiber Bragg grating in all-optical analog-to-digital conversion
Wang Tao (王涛), Kang Zhe (康哲), Yuan Jin-Hui (苑金辉), Tian Ye (田野), Yan Bin-Bin (颜玢玢), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀). Chin. Phys. B, 2014, 23(10): 104212.
[8] Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques
Kang Zhe (康哲), Yuan Jin-Hui (苑金辉), Li Sha (李莎), Xie Song-Lin (解松霖), Yan Bin-Bin (颜玢玢), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀). Chin. Phys. B, 2013, 22(11): 114211.
[9] Intersubband absorption with difference-frequency generation in GaAs asymmetric quantum wells
Cao Xiao-Long (曹小龙), Li Zhong-Yang (李忠洋), Yao Jian-Quan (姚建铨), Wang Yu-Ye (王与烨), Zhu Neng-Nian (朱能念), Zhong Kai (钟凯), Xu De-Gang (徐德刚 ). Chin. Phys. B, 2012, 21(8): 084207.
[10] Ultra-violet and mid-infrared continuum generation by cross-phase modulation between red-shifted solitons and blue-shifted dispersive waves in a photonic crystal fiber
Shen Xiang-Wei(申向伟), Yuan Jin-Hui(苑金辉), Sang Xin-Zhu(桑新柱), Yu Chong-Xiu(余重秀), Rao Lan(饶岚), Xin Xiang-Jun(忻向军), Xia Min(夏民), Han Ying(韩颖), Xia Chang-Ming(夏长明), and Hou Lan-Tian(侯蓝田) . Chin. Phys. B, 2012, 21(7): 074209.
[11] Highly efficient Cherenkov radiation generation in the irregular point of hollow-core photonic crystal fiber
Shen Xiang-Wei (申向伟), Yuan Jin-Hui (苑金辉), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀), Rao Lan (饶兰), Xia Min (夏民), Han Ying (韩颖), Xia Chang-Ming (夏长明), Hou Lan-Tian (侯蓝田 ). Chin. Phys. B, 2012, 21(11): 114102.
[12] Saturation of biphoton generation near atomic resonance
Chen Peng (陈鹏), Qian Jun (钱军), Hu Zheng-Feng (胡正峰), Wang Yu-Zhu (王育竹 ). Chin. Phys. B, 2012, 21(11): 114204.
[13] Compact efficient optical parametric generator internal to a Q-switched Nd:YVO4 laser with periodically poled MgO:LiNbO3
Ji Feng(纪峰), Yao Jian-Quan(姚建铨), Zhang Bai-Gang(张百钢), Zhang Tie-Li(张铁犁), Xu De-Gang(徐德刚), and Wang Peng(王鹏). Chin. Phys. B, 2008, 17(4): 1286-1290.
[14] Observation of four-wave mixing in caesium atoms using a noncycling transition
Wang Li-Rong (汪丽蓉), Ma Jie (马杰), Zhao Jian-Ming (赵建明), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2006, 15(6): 1268-1272.
[15] High-efficiency single-pass cw quasi-phase-matched frequency doubling based on PP-MgO:SLT
Zhang Bai-Gang (张百钢), Yao Jian-Quan (姚建铨), Lu Yang (路洋), Xu De-Gang (徐德刚), Ding Xin (丁欣), Wang Peng (王鹏), Zhang Tie-Li (张铁犁), Ji Feng (纪峰). Chin. Phys. B, 2005, 14(2): 353-358.
No Suggested Reading articles found!