Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 128201    DOI: 10.1088/1674-1056/26/12/128201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of elastic strain energy on grain growth and texture in AZ31 magnesium alloy by phase-field simulation

Ri He(何日), Ming-Tao Wang(王明涛), Jian-Feng Jin(金剑锋), Ya-Ping Zong(宗亚平)
School of Materials and Engineering & Key Laboratory for Anisotropy and Texture of Materials(Ministry of Education), Northeastern University, Shenyang 110089, China
Abstract  A phase-field model is modified to investigate the grain growth and texture evolution in AZ31 magnesium alloy during stressing at elevated temperatures. The order parameters are defined to represent a physical variable of grain orientation in terms of three angles in spatial coordinates so that the grain volume of different order parameters can be used to indicate the texture of the alloy. The stiffness tensors for different grains are different because of elastic anisotropy of the magnesium lattice. The tensor is defined by transforming the standard stiffness tensor according to the angle between the (0001) plane of a grain and the direction of applied stress. Therefore, different grains contribute to different amounts of work under applied stress. The simulation results are well-explained by using the limited experimental data available, and the texture results are in good agreement with the experimental observations. The simulation results reveal that the applied stress strongly influences AZ31 alloy grain growth and that the grain-growth rate increases with the applied stress increasing, particularly when the stress is less than 400 MPa. A parameter (△d) is introduced to characterize the degree of grain-size variation due to abnormal grain growth; the △d increases with applied stress increasing and becomes considerably large only when the stress is greater than 800 MPa. Moreover, the applied stress also results in an intensive texture of the 〈0001〉 axis parallel to the direction of compressive stress in AZ31 alloy after growing at elevated temperatures, only when the applied stress is greater than 500 MPa.
Keywords:  phase-field simulation      elastic energy      texture      magnesium alloy  
Received:  15 May 2017      Revised:  18 July 2017      Accepted manuscript online: 
PACS:  82.20.Wt (Computational modeling; simulation)  
  91.60.Ed (Crystal structure and defects, microstructure)  
  81.40.Jj (Elasticity and anelasticity, stress-strain relations)  
  68.55.jm (Texture)  
Fund: Project supported by the National Key Research Development Program of China (Grant No. 2016YFB0701204) and the National Natural Science Foundation of China (Grant Nos. U1302272 and 51571055).
Corresponding Authors:  Ming-Tao Wang     E-mail:  wangmingtao@mail.neu.edu.cn

Cite this article: 

Ri He(何日), Ming-Tao Wang(王明涛), Jian-Feng Jin(金剑锋), Ya-Ping Zong(宗亚平) Effect of elastic strain energy on grain growth and texture in AZ31 magnesium alloy by phase-field simulation 2017 Chin. Phys. B 26 128201

[1] Tang Y and El-Awady J A 2014 Acta Mater. 71 319
[2] Zhang J and Joshi S P 2012 J. Mech. Phys. Solids 60 945
[3] Agnew S R and Duygulu Ö 2005 Int. J. Plast. 21 1161
[4] Kim W J, Lee Y G, Lee M J, Wang J Y and Park Y B 2011 Scr. Mater. 65 1105
[5] Yin S M, Wang C H, Diao Y D, Wu S D and Li S X 2011 J. Mater. Sci. Technol. 27 29
[6] del Valle J A, Carreño F and Ruano O A 2006 Acta Mater. 54 4247
[7] Victoria-Hernandez J, Yi S, Bohlen J, Kurz G and Letzig D 2014 J. Alloys Compd. 616 189
[8] Chai S, Zhang D, Pan F, Dong J, Guo F and Dong Y 2013 Mater. Sci. Eng. A 588 208
[9] Laser T, Hartig C, Nürnberg M R, Letzig D and Bormann R 2008 Acta Mater. 56 2791
[10] del Valle J A and Ruano O A 2008 Mater. Sci. Eng. A 487 473
[11] Kim S H, You B S, Dong Yim C and Seo Y M 2005 Mater. Lett. 59 3876
[12] Suwas S and Ray R K 2014 Crystallographic Texture of Materials (London:Springer) pp. 108-137
[13] Lu L, Huang J W, Fan D, Bie B X, Sun T, Fezzaa K, Gong X L and Luo S N 2016 Acta Mater. 120 86
[14] Chumachenko E N 2009 Mater. Sci. Eng. A 499 342
[15] Ramakrishnan N and Ramarao P 1999 Mater. Sci. 22 829
[16] Steinbach I 2009 Modell. Simul. Mater. Sci. Eng. 17 073001
[17] Wen Y H, Wang Y and Chen L Q 2001 Acta Mater. 49 13
[18] Guo W, Steinbach I, Somsen C and Eggeler G 2011 Acta Mater. 59 3287
[19] Kim D U, Cha P R, Kim S G, Kim W T, Cho J, Han H N, Lee H J and Kim J 2012 Comp. Mater. Sci. 56 58
[20] Darvishi Kamachali R, Kim S J and Steinbach I 2015 Comp. Mater. Sci. 104 193
[21] Bhattacharyya S, Heo T W, Chang K and Chen L Q 2011 Modell. Simul. Mater. Sci. Eng. 19 035002
[22] Lu Y L, Zhang L C, Zhou Y Y and Chen Z 2014 Chin. Phys. B 23 069102
[23] Wang M T, Zong B Y and Wang G 2008 J. Mater. Sci. Technol. 24 829
[24] Wang M T, Zong B Y and Wang G 2009 Comp. Mater. Sci. 45 217
[25] Wu Y, Zong B Y, Zhang X G and Wang M T 2012 Metall. Trans. A 44 1599
[26] He R, Wang M T, Zhang X and Zong B Y 2016 Modell. Simul. Mater. Sci. Eng. 24 055017
[27] Allen S M and Cahn J W 1979 Acta Met. 27 1085
[28] Cahn J W and Hilliard J E 1958 J. Chem. Phys. 28 258
[29] Fan D and Chen L Q 1997 Acta Mater. 45 611
[30] Khachaturyan A G 1983 Theory of structure transformation in solids (New York:John Wiley & Sons) pp. 198-212
[31] Eshelby J D 1957 Proc. Roy. Soc. London 241 376
[32] Ganeshan S, Shang S L, Wang Y and Liu Z K 2009 Acta Mater. 57 3876
[33] Nourollahi G A, Farahani M, Babakhani A and Mirjavadi S S 2013 Mater. Res. 16 1309
[34] Moreau G, Cornet J A and Calais D 1971 J. Nucl. Mater. 38 197
[35] Zhang X G, Wang M T, He R, Li W K and Zong B Y 2017 Comp. Mater. Sci. 127 261
[36] Chen L Q and Shen J 1998 Comput. Phys. Commun. 108 147
[37] Liu R C, Wang L Y, Gu L G and Huang G S 2004 Light Alloy Fabric. Technol. 23 22
[38] Zhang X P, Castagne S, Luo X F and Gu C F 2011 Mater. Sci. Eng. A 528 838
[39] Johnson W A and Mehl R F 1939 Trans. Am. Inst. Min. Metall. Pet. Eng. Inc. 416
[40] Dudamell N V, Ulacia I, Gálvez F, Yi S, Bohlen J, Letzig D, Hurtado I and Pérez-Prado M T 2012 Mater. Sci. Eng. A 532 528
[41] Mullins W W 1956 J. Appl. Phys. 27 900
[1] Texture analysis of ultra-high coercivity Sm2Co7 hot deformation magnets
Qiang Ma(马强), Meishuang Jia(贾美爽), Zhifeng Hu(胡智峰), Ming Yue(岳明), Yanli Liu(刘艳丽), Tongyun Zhao(赵同云), and Baogen Shen(沈保根). Chin. Phys. B, 2021, 30(4): 047505.
[2] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[3] Theoretical derivation of the crystallographic parameters of polytypes of long-period stacking ordered structures with the period of 13 and 14 in hexagonal close-packed system
Li Ye(叶礼), Dong-Shan Zhao(赵东山), Yuan-Lin Zhuang(庄园林), Shuang-Feng Jia(贾双凤), Jia-Ping Zhou(周嘉萍), Jia-Nian Gui(桂嘉年), Jian-Bo Wang(王建波). Chin. Phys. B, 2018, 27(9): 096102.
[4] Magnetic properties of L10 FePt thin film influenced byrecoverable strains stemmed from the polarization of Pb(Mg1/3Nb2/3)O3-PbTiO3 substrate
Li-Wang Liu(刘立旺), Cheng-Chao Hu(胡成超), Ye-Chuan Xu(徐野川), Hou-Bing Huang(黄厚兵), Jiang-Wei Cao(曹江伟), Linyun Liang(梁林云), Wei-Feng Rao(饶伟锋). Chin. Phys. B, 2018, 27(7): 077503.
[5] Structural phase transition, strength, and texture in vanadium at high pressure under nonhydrostatic compression
Lun Xiong(熊伦), Jing Liu(刘景). Chin. Phys. B, 2018, 27(3): 036101.
[6] Effect of elasticity mismatch on cell deformation and migration: A phase-field study
Yuanfeng Yin(尹元枫), Hui Xing(邢辉), Duyang Zang(臧渡洋), Kexin Jin(金克新). Chin. Phys. B, 2018, 27(11): 116201.
[7] The ground states and pseudospin textures of rotating two-component Bose-Einstein condensates trapped in harmonic plus quartic potential
Yan Liu(刘燕), Su-Ying Zhang(张素英). Chin. Phys. B, 2016, 25(9): 090304.
[8] Spin texturing in quantum wires with Rashba and Dresselhaus spin-orbit interactions and in-plane magnetic field
B Gisi, S Sakiroglu, İ Sokmen. Chin. Phys. B, 2016, 25(1): 017103.
[9] Enhanced coercivity and remanence of PrCo5 nanoflakes prepared by surfactant-assisted ball milling with heat-treated starting powder
Zuo Wen-Liang (左文亮), Zhao Xin (赵鑫), Xiong Jie-Fu (熊杰夫), Shang Rong-Xiang (商荣翔), Zhang Ming (章明), Hu Feng-Xia (胡凤霞), Sun Ji-Rong (孙继荣), Shen Bao-Gen (沈保根). Chin. Phys. B, 2015, 24(7): 077103.
[10] Effects of thickness on superconducting properties and structures of Y2O3/BZO-doped MOD-YBCO films
Ding Fa-Zhu (丁发柱), Gu Hong-Wei (古宏伟), Wang Hong-Yan (王洪艳), Zhang Hui-Liang (张慧亮), Zhang Teng (张腾), Qu Fei (屈飞), Dong Ze-Bin (董泽斌), Zhou Wei-Wei (周微微). Chin. Phys. B, 2015, 24(5): 057401.
[11] Theoretical analysis of droplet transition from Cassie to Wenzel state
Liu Tian-Qing (刘天庆), Li Yan-Jie (李艳杰), Li Xiang-Qin (李香琴), Sun Wei (孙玮). Chin. Phys. B, 2015, 24(11): 116801.
[12] Phase-field study of the second phase particle effect on texture evolution of polycrystalline material
Lu Yan-Li (卢艳丽), Zhang Liu-Chao (张刘超), Zhou Ying-Ying (周影影), Chen Zheng (陈铮). Chin. Phys. B, 2014, 23(6): 069102.
[13] Dendrite to symmetry-broken dendrite transition in directional solidification of non-axially oriented crystals
Xing Hui (邢辉), Wang Jian-Yuan (王建元), Chen Chang-Le (陈长乐), Jin Ke-Xin (金克新), Du Li-Fei (杜立飞). Chin. Phys. B, 2014, 23(3): 038104.
[14] Spin texturing in a parabolically confined quantum wire with Rashba and Dresselhaus spin–orbit interactions
S. Saríkurt, S. Şakiroğlu, K. Akgüngör, İ. Sökmen. Chin. Phys. B, 2014, 23(1): 017102.
[15] Light scattering effect of submicro-textured Ag/Al composite films prepared at lower substrate temperatures
Tang Ping-Lin (唐平林), Wu Yong-Gang (吴永刚), Tong Guang-De (童广德), Xia Zi-Huan (夏子奂), Liu Ren-Chen (刘仁臣), Liang Zhao-Ming (梁钊铭), Zhou Jian (周建). Chin. Phys. B, 2013, 22(7): 078801.
No Suggested Reading articles found!