|
|
Elastic strain response in the modified phase-field-crystal model |
Wenquan Zhou(周文权)1, Jincheng Wang(王锦程)1, Zhijun Wang(王志军)1, Yunhao Huang(黄赟浩)1, Can Guo(郭灿)1, Junjie Li(李俊杰)1, Yaolin Guo(郭耀麟)2 |
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China;
2 Ningbo Institute of Industrial Technology, Ningbo 315201, China |
|
|
Abstract To understand and develop new nanostructure materials with specific mechanical properties, a good knowledge of the elastic strain response is mandatory. Here we investigate the linear elasticity response in the modified phase-field-crystal (MPFC) model. The results show that two different propagation modes control the elastic interaction length and time, which determine whether the density waves can propagate or not. By quantitatively calculating the strain field, we find that the strain distribution is indeed extremely uniform in case of elasticity. Further, we present a detailed theoretical analysis for the orientation dependence and temperature dependence of shear modulus. The simulation results show that the shear modulus reveals strong anisotropy and the one-mode analysis provides a good guideline for determining elastic shear constants until the system temperature falls below a certain value.
|
Received: 21 February 2017
Revised: 06 May 2017
Accepted manuscript online:
|
PACS:
|
07.05.Tp
|
(Computer modeling and simulation)
|
|
81.40.Jj
|
(Elasticity and anelasticity, stress-strain relations)
|
|
62.20.de
|
(Elastic moduli)
|
|
02.70.-c
|
(Computational techniques; simulations)
|
|
Fund: Project supported by the National Natural Science foundation of China (Grant Nos. 51571165 and 51371151), Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase), China, and the Fundamental Research Funds for the Central Universities, China (Grant No. 3102015BJ(II)ZS001). |
Corresponding Authors:
Jincheng Wang
E-mail: jchwang@nwpu.edu.cn
|
Cite this article:
Wenquan Zhou(周文权), Jincheng Wang(王锦程), Zhijun Wang(王志军), Yunhao Huang(黄赟浩), Can Guo(郭灿), Junjie Li(李俊杰), Yaolin Guo(郭耀麟) Elastic strain response in the modified phase-field-crystal model 2017 Chin. Phys. B 26 090702
|
[1] |
Zhu T and Li J 2010 Prog. Mater. Sci. 55 710
|
[2] |
Du J P, Wang Y J, Lo Y C, Wan L and Ogata S 2016 Phys. Rev. B 94 104110
|
[3] |
Chen L Y, Richter G, Sullivan J P and Gianola D S 2012 Phys. Rev. Lett. 109 125503
|
[4] |
Wang Y J, Gao G J and Ogata S 2013 Appl. Phys. Lett. 102 041902
|
[5] |
Dao M, Lu L, Asaro R J, Hosson D J and Ma E 2007 Acta. Mater. 55 4041
|
[6] |
Hessam Y and Kianoosh H 2015 Model. Simul. Mater. Sci. 23 065004
|
[7] |
Oxtoby D W 2002 Ann. Rev. Mater. Res. 32 39
|
[8] |
Elder K R and Grant M 2004 Phys. Rew. E 70 051605
|
[9] |
Elder K R, Katakowski M, Haataja M and Grant M 2002 Phys. Rew. Lett. 88 245701
|
[10] |
Wu K A and Karma A 2007 Phys. Rev. B 76 184107
|
[11] |
Yang T, Chen Z, Zhang J, Wang Y X and Lu Y L 2016 Chin. Phys. B 26 057802
|
[12] |
Guo C, Wang J C, Wang Z J, Guo Y L and Tang S 2015 Phys. Rev. E 92 013309
|
[13] |
Chan P Y, Goldenfeld N and Dantzig J 2009 Phys. Rev. E 79 035701
|
[14] |
Ren X, Wang J C, Yang Y J and Yang G C 2010 Acta Phys. Sin 59 3595 (in Chinese)
|
[15] |
Gao Y J, Huang L L, Deng Q Q, Zhou W Q, Luo Z R and L K 2016 Acta. Mater 117 238
|
[16] |
Gao Y J, Luo Z R, Huang L L, Mao H, Huang C G and Lin K 2016 Model. Simul. Mater. Sci. 24 055010
|
[17] |
Hu S, Chen Z, Peng Y Y, Liu Y J and Guo L Y 2016 Comp. Mater. Sci. 121 143
|
[18] |
Stefanovic P, Haataja M and Provatas N 2006 Phys. Rev. Lett. 96 225504
|
[19] |
Zhou W Q, Wang J C, Wang Z J, Zhang Q, Guo C, Li J J and G Y L 2017 Comp. Mater. Sci. 127 121
|
[20] |
Stefanovic P, Haataja M and Provatas 2009 Phys. Rev. E 80 046107
|
[21] |
Chan P Y, Tsekenis G, Dantzig J, Dahmen K A and Goldenfeld N 2010 Phys. Rev. Lett. 105 015502
|
[22] |
Wu K A and Voorhees 2012 Acta. Mater 60 407
|
[23] |
Adland A, Karma A, Spatschek R, Buta D and Asta M 2013 Phys. Rev. B 87 024110
|
[24] |
Provatas N and Elder K R 2011 Phase-field Methods in Materials Science and Engineering (Urbana: Wiley) p. 158
|
[25] |
Wang Y Z and Li J 2010 Acta Mater. 58 1212
|
[26] |
Trautt Z T, Adland A, Karma A and Mishin Y 2012 Acta Mater 6528
|
[27] |
Wang Z J, Guo Y L, Tang S, Li J J, Wang J C and Zhou Y H 2015 Ultramicroscopy 150 74
|
[28] |
Calindo P L, Kret S, Sanchez A M, Laval J Y, Yanez A, Pizarro J, Guerrero E, Ben T and Molina S I 2007 Ultramicroscopy 107 1186
|
[29] |
Hytch M J, Snoeck E and kiaas R 1998 Ultramicroscopy 74 131
|
[30] |
Pilkey W D and Pilkey D F 2008 Peterson's Stress Concentration Factors (New York: Wiley) p. 105
|
[31] |
Wu K A and Voorhees 2009 Phys. Rev. B 80 125408
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|