Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 098102    DOI: 10.1088/1674-1056/23/9/098102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of stress state on deformation and fracture of nanocrystalline copper:Molecular dynamics simulation

Zhang Liang (张亮), Lü Cheng (吕程), Kiet Tieu, Pei Lin-Qing (裴林清), Zhao Xing (赵星)
School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
Abstract  Deformation in a microcomponent is often constrained by surrounding joined material making the component under mixed loading and multiple stress states. In this study, molecular dynamics (MD) simulation are conducted to probe the effect of stress states on the deformation and fracture of nanocrystalline Cu. Tensile strain is applied on a Cu single crystal, bicrystal and polycrystal respectively, under two different tension boundary conditions. Simulations are first conducted on the bicrystal and polycrystal models without lattice imperfection. The results reveal that, compared with the performance of simulation models under free boundary condition, the transverse stress caused by the constrained boundary condition leads to a much higher tensile stress and can severely limit the plastic deformation, which in return promotes cleavage fracture in the model. Simulations are then performed on Cu single crystal and polycrystal with an initial crack. Under constrained boundary condition, the crack tip propagates rapidly in the single crystal in a cleavage manner while the crack becomes blunting and extends along the grain boundaries in the polycrystal. Under free boundary condition, massive dislocation activities dominate the deformation mechanisms and the crack plays a little role in both single crystals and polycrystals.
Keywords:  molecular dynamics      nanocrystalline      stress state      deformation mechanism  
Received:  14 January 2014      Revised:  12 March 2014      Accepted manuscript online: 
PACS:  81.07.Nb (Molecular nanostructures)  
  81.07.Bc (Nanocrystalline materials)  
  81.40.Vw (Pressure treatment)  
  81.40.Jj (Elasticity and anelasticity, stress-strain relations)  
Fund: Project supported by the Research Council Discovery Projects of Australia (Grant No. DP0773329).
Corresponding Authors:  Lü Cheng     E-mail:  chenglu@uow.edu.au

Cite this article: 

Zhang Liang (张亮), Lü Cheng (吕程), Kiet Tieu, Pei Lin-Qing (裴林清), Zhao Xing (赵星) Effect of stress state on deformation and fracture of nanocrystalline copper:Molecular dynamics simulation 2014 Chin. Phys. B 23 098102

[1] Dao M, Lu L Asaro R J, de Hosson J T M and Ma E 2007 Acta Mater. 55 4041
[2] Weertman 1999 MRS Bull. 24 44
[3] Farhat Z N, Ding Y, Northwood D O and Alpas A T 1996 Mater. Sci. Eng. A 206 302
[4] Jeong D H, Gonzalez F, Palumbo G, Aust K T and Erb U 2001 Scr. Mater. 44 493
[5] Rupert T J and Schuh C A 2010 Acta Mater. 58 4137
[6] Hanlon T, Tabachnikova E D and Suresh S 2005 Int. J. Fatigue 27 1147
[7] Cavaliere P 2009 Int. J. Fatigue 31 1476
[8] Xie J J and Hong Y S 2009 Acta Metall. Sin. 45 844
[9] Wang Y B, Zhang G, Liu M J, Chen X L and Chen J 2009 Chin. Phys. B 18 1181
[10] Xie S F, Chen S D and Soh A K 2011 Chin. Phys. Lett. 28 066201
[11] Wolf D, Yamakov V, Phillpot S R, Mukherjee A and Gleiter H 2005 Acta Mater. 53 1
[12] Schiotz J, Di Tolla F D and Jacobsen K W 1998 Nature 391 561
[13] van Swygenhoven H, Spaczer M, Caro A and Farkas D 1999 Phys. Rev. B 60 22
[14] van Swygenhoven H, P M Derlet 2001 Phys. Rev. B 64 224105
[15] Yamakov V, Wolf D, Salazar M, Phillpot S R and Gleiter H 2001 Acta Mater. 49 2713
[16] van Swygenhoven H, Derlet P M and Froseth A G 2006 Acta Mater. 54 1975
[17] Sansoz F and Molinari J F 2005 Acta Mater. 53 1931
[18] Zhou Y M, He Y G, Lu A X and Wang Q 2009 Chin. Phys. B 18 3966
[19] Wang T, Zhou F X and Liu Y W 2001 Chin. Phys. Lett. 18 1242
[20] Sutton A P and Balluffi R W 1995 Interfaces in Crystalline Materials p. 205
[21] Kitamura T, Yashiro K and Ohtani R 1997 JSME Int. J. Ser. A 40 430
[22] Warner D H and Molinari J F 2008 Model. Simul. Mater Sci. Eng. 16 705
[23] Spearot D E, Tschopp M A, Jacob K I and McDowell D L 2007 Acta Mater. 55 7507
[24] Tschopp M A and McDowell D L 2007 Appl. Phys. Lett. 75 121916
[25] Plimpton S 1995 J. Comput. Phys. 117 1
[26] Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F and Kress J D 2001 Phys. Rev. B 63 2241061
[27] Carter C B and Ray I L F 1977 Philos. Mag. 35 189
[28] Spearot D E 2008 Mech. Res. Commun. 35 81
[29] Hertzberg R W Deformation and Fracture Mechanics of Engineering Materials (New York: Wiley & Sons)
[30] Spearot D E, Jacob K I and McDowell D L 2007 Int. J. Plasticity 23 143
[31] Tschopp M A and McDowell D L 2008 Int. J. Plasticity 24 191
[32] Schiotz J, Di Tolla F D and Jacobsen K W 1998 Nature 391 561
[33] van Swygenhoven H and Weertman J R 2006 Mater. Today 9 24
[34] Shimokawa T, Nakatani A and Kitagawa H 2004 JSME Int. J. Ser. A 47 83
[35] Zheng Y G, Zhang H W, Chen Z, Lu C and Mai Y W 2009 Phys. Lett. A 373 570
[36] Kizuka T 1998 Phys. Rev. B 57 11158
[37] Furuya K, Mitsuishi K, Ishikawa N and Allen C W 2000 Mater. Sci. Eng. A 285 85
[38] Potirniche G P, Horstemeyer M F, Gullett P M and Jelinek B 2006 Proc. R. Soc. A 462 3707
[39] Qing P L, Cheng L, Kiet T, Tao Z H, Xing Z, Yu C K and Liang Z 2013 J. Nano. Res. 25 188
[40] Legros M, Gianola D S and Hemker K J 2008 Acta Mater 56 3380
[41] Merkle K L, Thompson L J and Phillipp F 2004 Interface Sci. 12 277
[42] Haslam A J, Moldovan D, Yamakov V, Wolf D, Phillpot S R and Gleiter H 2003 Acta Mater. 51 2097
[43] Shiga M and Shinoda W 2004 Phys. Rev. B 70 054102
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[12] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[13] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!