Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 088106    DOI: 10.1088/1674-1056/24/8/088106
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Molecular dynamics simulation on generalized stacking fault energies of FCC metals under preloading stress

Zhang Liang (张亮), Lü Cheng (吕程), Tieu Kiet, Zhao Xing (赵星), Pei Lin-Qing (裴林清), Michal Guillaume
School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
Abstract  Molecular dynamics (MD) simulations are performed to investigate the effects of stress on generalized stacking fault (GSF) energy of three fcc metals (Cu, Al, and Ni). The simulation model is deformed by uniaxial tension or compression in each of [111], [11-2], and [1-10] directions, respectively, before shifting the lattice to calculate the GSF curve. Simulation results show that the values of unstable stacking fault energy (γusf), stable stacking fault energy (γsf), and unstable twin fault energy (γutf) of the three elements can change with the preloaded tensile or compressive stress in different directions. The ratio of γsf/γusf, which is related to the energy barrier for full dislocation nucleation, and the ratio of γutf/γusf, which is related to the energy barrier for twinning formation are plotted each as a function of the preloading stress. The results of this study reveal that the stress state can change the energy barrier of defect nucleation in the crystal lattice, and thereby can play an important role in the deformation mechanism of nanocrystalline material.
Keywords:  molecular dynamics      embeded atom method      generalized stacking fault  
Received:  24 October 2014      Revised:  06 March 2015      Accepted manuscript online: 
PACS:  81.07.Nb (Molecular nanostructures)  
  81.07.Bc (Nanocrystalline materials)  
  81.40.Vw (Pressure treatment)  
  81.40.Jj (Elasticity and anelasticity, stress-strain relations)  
Fund: Project supported by Australia Research Council Discovery Projects (Grant No. DP130103973). L. Zhang, X. Zhao and L. Q. Pei were financially supported by the China Scholarship Council (CSC).
Corresponding Authors:  Lü Cheng     E-mail:  chenglu@uow.edu.cn

Cite this article: 

Zhang Liang (张亮), Lü Cheng (吕程), Tieu Kiet, Zhao Xing (赵星), Pei Lin-Qing (裴林清), Michal Guillaume Molecular dynamics simulation on generalized stacking fault energies of FCC metals under preloading stress 2015 Chin. Phys. B 24 088106

[1] Champion Y, Langlois C, Guérin M S, Langlois P, Bonnentien J L and Htch M J 2003 Science 300 310
[2] Lu L, Shen Y, Chen X, Qian L and Lu K 2004 Science 304 422
[3] Ma E 2003 Nat. Mater. 2 7
[4] Schiøtz J and Jacobsen K W 2003 Science 301 1357
[5] Zhou Y, Erb U, Aust K T and Palumbo G 2003 Scr. Mater. 48 825
[6] Wang Y M, Hamza A V and Ma E 2005 Appl. Phys. Lett. 86 241917
[7] Wang Y M, Hamza A V and Ma E 2006 Acta Mater. 54 2715
[8] Schiøtz J, Tolla F D and Jacobsen K W 1998 Nature 391 561
[9] Schiøtz J, Vegge T, Tolla F D and Jacobsen K W 1999 Phys. Rev. B 60 11971
[10] Schiøtz J 2004 Scr. Mater. 51 837
[11] Asaro R J, Krysl P and Kad B 2003 Philos. Mag. Lett. 83 733
[12] Koch C C 2003 Scr. Mater. 49 657
[13] Kumar K S, Van Swygenhoven H and Suresh S 2003 Acta Mater. 51 5743
[14] Van Swygenhoven H 2002 Science 296 66
[15] Tschopp M A and McDowell D L 2008 Int. J. Plast. 24 191
[16] Spearot D E, Jacob K I and McDowell D L 2007 Int. J. Plast. 23 143
[17] Spearot D E, Jacob K I and McDowell D L 2005 Acta Mater. 53 3579
[18] Yamakov V, Wolf D, Phillpot S R, Mukherjee A K and Gleiter H 2004 Nat. Mater. 3 43
[19] Van Swygenhoven H, Derlet P M and Froseth A G 2004 Nat. Mater. 3 399
[20] Vítek V 1966 Phys. Status Solidi 18 687
[21] Vítek V 1968 Philos. Mag. 18 773
[22] Zimmerman J A, Gao H and Abraham F F 2000 Modell. Simul. Mater. Sci. Eng. 8 103
[23] Tschopp M A and McDowell D L 2008 J. Mech. Phys. Solids 56 1806
[24] Ogata S, Li J and Yip S 2002 Science 298 807
[25] Tschopp M A, Tucker G J and McDowell D L 2008 Comput. Mater. Sci. 44 351
[26] Spearot D E, Tschopp M A, Jacob K I and McDowell D L 2007 Acta Mater. 55 705
[27] Zhang L, Lu C and Tieu K 2014 Sci. Rep. 4 5919
[28] Zhang L, Lu C, Tieu K, Pei L Q and Zhao X 2014 Chin. Phys. B 23 098102
[29] Rice J R 1992 J. Mech. Phys. Solids 40 239
[30] Hai S and Tadmor E B 2003 Acta Mater. 51 117
[31] Tadmor E B and Hai S 2003 J. Mech. Phys. Solids 51 765
[32] Plimpton S 1995 J. Comput. Phys. 117 1
[33] Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F and Kress J D 2001 Phys. Rev. B 63 2241061
[34] Zope R R and Mishin Y 2003 Phys. Rev. B 68 024102
[35] Mishin Y, Farkas D, Mehl M J and Papaconstantopoulos D A 1999 Phys. Rev. B 59 3393
[36] Carter C B and Ray I L F 1977 Philos. Mag. 35 189
[37] Ebrahim A, Mohsen Asle Z, Amitava M and Mark A T 2014 J. Phys.: Condens. Matter 26 115404
[38] Liao X Z, Zhou F, Lavernia E J, He D W and Zhu Y T 2023 Appl. Phys. Lett. 75 5062
[39] Liao X Z, Zhao Y H, Srinivasan S G, Zhu Y T, Valiev R Z and Gunderov D V 2004 Appl. Phys. Lett. 75 592
[40] Lu K, Lu L, Chen X and Huang X 2009 Science 323 607
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[12] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[13] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!