Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 075201    DOI: 10.1088/1674-1056/19/7/075201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Scattering of light waves by electron electrostatic waves in laser produced plasmas

Liu Zhan-Jun(刘占军)a) b)†ger, Xiang Jiang(项江)b), Zheng Chun-Yang (郑春阳)a)b), Zhu Shao-Ping(朱少平)b), Cao Li-Hua(曹莉华) b), He Xian-Tu(贺贤土)a)b), and Wang Yu-Gang(王宇钢) a)
a Center for Applied Physics and Technology, State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China; b Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
Abstract  The propagation of light waves in an underdense plasma is studied using one-dimensional Vlasov—Maxwell numerical simulation. It is found that the light waves can be scattered by electron plasma waves as well as other heavily and weakly damping electron wave modes, corresponding to stimulated Raman and Brilluoin-like scatterings. The stimulated electron acoustic wave scattering is also observed as a high scattering level. High frequency plasma wave scattering is also observed. These electron electrostatic wave modes are due to a non-thermal electron distribution produced by the wave—particle interactions. The collision effects on stimulated electron acoustic wave and the laser intensity effects on the scattering spectra are also investigated.
Keywords:  scatterings      laser plasma      Vlasov simulation  
Revised:  06 January 2010      Accepted manuscript online: 
PACS:  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
  52.50.Jm (Plasma production and heating by laser beams (laser-foil, laser-cluster, etc.))  
  52.65.Ff (Fokker-Planck and Vlasov equation)  
  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
Fund: Project supported by the National High-Tech ICF Committee of China, the National Natural Science Foundation of China (Grant Nos. 10975023, 10835003, 10935003 and 10974022) and the National Basic Research Program (Grant Nos. 2007CB815101, 2007CB814802 and 2010CB832904).

Cite this article: 

Liu Zhan-Jun(刘占军), Xiang Jiang(项江), Zheng Chun-Yang (郑春阳), Zhu Shao-Ping(朱少平), Cao Li-Hua(曹莉华), He Xian-Tu(贺贤土), and Wang Yu-Gang(王宇钢) Scattering of light waves by electron electrostatic waves in laser produced plasmas 2010 Chin. Phys. B 19 075201

[1] Goldman M V and Dubois D F 1965 Phys. Fluids 8 1404
[2] Baym G and Hellwarth R W 1965 IEEE J. Quantum Electron. 1 309
[3] Liu C S, Rosenbluth M N and White R B 1974 Phys. Fluids 17 1211
[4] Zhang L, Dong Q L, Zhao J, Wang S J, Sheng Z M, He M Q and Zhang J 2009 Acta Phys. Sin. 58 1833 (in Chinese)
[5] Cao L H, Yu W, Xu H, Liu Z J, Zheng C Y and Li B 2004 Chin. Phys. 13 1302
[6] Jin Z Y, Shen B F, Zhang X M, Wang F C and Ji L L 2009 Chin. Phys. B 18 5395
[7] Califano F, Cecchi T and Chiuderi C 2002 Phys. Plasmas 9 451
[8] Ghizzo A, Bertrand P, Shoucri M, Johnston T W, Fijalkow F and Feix M R 1990 J. Comput. Phys. 90 431
[9] Liu Z J, Zhu S P, Cao L H and Zheng C Y 2007 Acta Phys. Sin. 56 7084 (in Chinese)
[10] Liu Z J, Zhu S P, Cao L H, Zheng C Y, He X T and Wang Y G 2009 Phys. Plasmas 16 112703
[11] Gary S P and Tokar R L 1985 Phys. Fluids 28 2439
[12] Yu M Y and Luo H 2008 Phys. Plasmas 15 024504
[13] Lu Q, Wang S and Dou X 2005 Phys. Plasmas 12 072903
[14] Montgomery D S, Focia R J, Rose H A, Russell D A, Cobble J A, Fern'andez J C and Johnson R P 2001 Phys. Rev. Lett. 87 155001
[15] Liu Z J, He X T, Zheng C Y and Wang Y G 2009 Phys. Plasmas bf 16 093108
[16] Bhatnagar P L, Gross E P and Krook M 1954 Phys. Rev. 94 511
[17] Mangeney A, Califano F, Cavazzoni C and Travnicek P 2002 J. Comput. Phys. 179 495
[18] Kruer W L 1988 The Physics of Laser Plasma Interactions (Addison-Wesley Publishing Company) 55
[19] Liu Z J, Zheng J and Yu C X 2002 Phys. Plasmas 9 1073
[20] Morales G J and O'Neil T M 1972 Phys. Rev. Lett. 28 417 endfootnotesize
[1] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
[2] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[3] Fundamental and progress of Bi2Te3-based thermoelectric materials
Min Hong(洪敏), Zhi-Gang Chen(陈志刚), Jin Zou(邹进). Chin. Phys. B, 2018, 27(4): 048403.
[4] Effect of multiple rescattering processes on harmonic emission in spatially inhomogeneous field
Cai-Ping Zhang(张彩萍), Chang-Long Xia(夏昌龙), Xiang-Fu Jia(贾祥富), Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2018, 27(3): 034206.
[5] Generation of high quality ion beams through the stable radiation pressure acceleration of the near critical density target
Xue-Ren Hong(洪学仁), Wei-Jun Zhou(周伟军), Bai-Song Xie(谢柏松), Yang Yang(杨阳), Li Wang(王莉), Jian-Min Tian(田建民), Rong-An Tang(唐荣安), Wen-Shan Duan(段文山). Chin. Phys. B, 2017, 26(6): 065203.
[6] Solid-like ablation propulsion generation in nanosecond pulsed laser interaction with carbon-doped glycerol
Zhi-Yuan Zheng(郑志远), Si-Qi Zhang(张思齐), Tian Liang(梁田), Jing Qi(齐婧), Wei-Chong Tang(汤唯冲), Ke Xiao(肖珂), Lu Gao(高禄), Hua Gao(高华), Zi-Li Zhang(张自力). Chin. Phys. B, 2017, 26(3): 035203.
[7] Detailed calibration of the PI-LCX: 1300 high performance single photon counting hard x-ray CCD camera
Wei Hong(洪伟), Xian-Lun Wen(温贤伦), Lai Wei(魏来), Bin Zhu(朱斌), Yu-Chi Wu(吴玉迟), Ke-Gong Dong(董克攻), Chun-Ye Jiao(焦春晔), Bo Wu(伍波), Ying-Ling He(何颖玲), Fa-Qiang Zhang(张发强), Wei-Min Zhou(周维民), Yu-Qiu Gu(谷渝秋). Chin. Phys. B, 2017, 26(2): 025204.
[8] Acceleration and radiation of externally injected electrons in laser plasma wakefield driven by a Laguerre-Gaussian pulse
Zhong-Chen Shen(沈众辰), Min Chen(陈民), Guo-Bo Zhang(张国博), Ji Luo(罗辑), Su-Ming Weng(翁苏明), Xiao-Hui Yuan(远晓辉), Feng Liu(刘峰), Zheng-Ming Sheng(盛政明). Chin. Phys. B, 2017, 26(11): 115204.
[9] Characteristics of droplets ejected from liquid glycerol doped with carbon in laser ablation propulsion
Zhi-Yuan Zheng(郑志远), Si-Qi Zhang(张思齐), Tian Liang(梁田), Lu Gao(高禄), Hua Gao(高华), Zi-Li Zhang(张自力). Chin. Phys. B, 2016, 25(4): 045204.
[10] Filamentation instability in two counter-streaming laser plasmas
Hui Liu(刘慧), Quan-Li Dong(董全力), Da-Wei Yuan(袁大伟), Xun Liu(刘勋), Neng Hua(华能), Zhan-Feng Qiao(乔战峰), Bao-Qiang Zhu(朱宝强), Jian-Qiang Zhu(朱健强), Bo-Bin Jiang(蒋柏彬), Kai Du(杜凯), Yong-Jian Tang(唐永健), Gang Zhao(赵刚), Xiao-Hui Yuan(远晓辉), Zheng-Ming Sheng(盛政明), Jie Zhang(张杰). Chin. Phys. B, 2016, 25(12): 125201.
[11] High-order optical vortex harmonics generated by relativistic femtosecond laser pulse
Han Yu-Jing (韩玉晶), Liao Guo-Qian (廖国前), Chen Li-Ming (陈黎明), Li Yu-Tong (李玉同), Wang Wei-Min (王伟民), Zhang Jie (张杰). Chin. Phys. B, 2015, 24(6): 065202.
[12] Production of intense attosecond vector beam pulse trains based on harmonics
Han Yu-Jing (韩玉晶), Liao Guo-Qian (廖国前), Chen Li-Ming (陈黎明), Li Yu-Tong (李玉同), Wang Wei-Min (王伟民), Zhang Jie (张杰). Chin. Phys. B, 2015, 24(11): 115203.
[13] Polarization characteristics of single shot nanosecond laser induced breakdown spectroscopy of Al
Liu Jia (刘佳), Tao Hai-Yan (陶海岩), Gao Xun (高勋), Hao Zuo-Qiang (郝作强), Lin Jing-Quan (林景全). Chin. Phys. B, 2013, 22(4): 044206.
[14] Laser propulsion with a high specific impulse using a thin film propellant
Zhang Yi(张翼), Lu Xin(鲁欣), Zhou Mu-Lin(周木林), Lin Xiao-Xuan(林晓宣), Zheng Zhi-Yuan(郑志远), Li Yu-Tong(李玉同), and Zhang Jie(张杰). Chin. Phys. B, 2011, 20(8): 087901.
[15] Generation and characterization of millimeter-scale plasmas for the research of laser plasma interactions on Shenguang-III prototype
Li Zhi-Chao(李志超), Zheng Jian(郑坚), Ding Yong-Kun(丁永坤), Yin Qiang(尹强), Jiang Xiao-Hua(蒋小华), Li San-Wei(李三伟), Guo Liang(郭亮), Yang Dong(杨冬), Wang Zhe-Bin(王哲斌), Zhang Huan(章欢), Liu Yong-Gang(刘永刚), Zhan Xia-Yu(詹夏宇), and Tang Qi(唐琦). Chin. Phys. B, 2010, 19(12): 125202.
No Suggested Reading articles found!