Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 060305    DOI: 10.1088/1674-1056/19/6/060305
GENERAL Prev   Next  

The s-parameterized Weyl-Wigner correspondence in the entangled form and its applications

Fan Hong-Yi(范洪义)a), Hu Li-Yun(胡利云)b), and Yuan Hong-Chun(袁洪春)a)†ger
a Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China; b College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China
Abstract  Based on the theory of integration within s-ordering of operators and the bipartite entangled state representation we introduce s-parameterized Weyl--Wigner correspondence in the entangled form. Some of its applications in quantum optics theory are presented as well.
Keywords:  s-parameterized Wigner operator      s-parameterized Weyl--Wigner correspondence      integration within s-ordered product of operators technique  
Received:  03 November 2009      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~10775097 and 10874174), and the President Foundation of the Chinese Academy of Sciences.

Cite this article: 

Fan Hong-Yi(范洪义), Hu Li-Yun(胡利云), and Yuan Hong-Chun(袁洪春) The s-parameterized Weyl-Wigner correspondence in the entangled form and its applications 2010 Chin. Phys. B 19 060305

[1] Cahill K E and Glauber R J 1969 Phys. Rev. 177 1857
[2] Cahill K E and Glauber R J 1969 Phys. Rev. 177 1882
[3] Weyl H 1927 Z. Phys. 46 1
[4] Weyl H 1950 The Theory of Groups and Quantum Mechanics (New York: Dover Publications)
[5] Fan H Y 2010 Chin. Phys . B 19 050303
[6] Glauber R J 1963 Phys. Rev. 130 2529
[7] Zhang W M, Feng D H and Gilmore R 1990 Rev. Mod. Phys. 62 867
[8] Schleich W P 2001 Quantum Optics in Phase Space (New York: Wiley-VCH Berlin)
[9] Walls D F and Milburn G 1994 Quantum Optics (Berlin: Springer-Verlag)
[10] Fan H Y 2003 J. Opt. B: Quantum Semiclass. Opt. 5 R147
[11] W\H{u nsche A 1999 J. Opt. B: Quantum Semiclass. Opt. 1 R11
[12] Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704
[13] Fan H Y and Guo Q 2007 Commun. Theor. Phys. 48 823
[14] Loudon R and Knight P L 1987 J. Mod. Opt. 34 709
[15] Fan H Y and Fan Y 1996 Phys. Rev. A 54 958
[16] Fan H Y and Fan Y 2002 Int. J. Mod. Phys. A 17 701
[17] Fan H Y 1992 J. Phys. A : Math. Gen. 25 1013
[18] Meng X G, Wang J S, Liang B L and Li H Q 2008 Chin. Phys. B 17 1791
[19] Hu L Y and Fan H Y 2009 Chin. Phys. B 18 902
[1] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[2] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[3] Heralded path-entangled NOON states generation from a reconfigurable photonic chip
Xinyao Yu(于馨瑶), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Miaomiao Yu(余苗苗), Chao Wu(吴超),Shichuan Xue(薛诗川), Qilin Zheng(郑骑林), Yingwen Liu(刘英文), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(6): 064203.
[4] Increasing the efficiency of post-selection in direct measurement of the quantum wave function
Yong-Li Wen(温永立), Shanchao Zhang(张善超), Hui Yan(颜辉), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2022, 31(3): 034206.
[5] Enhancing stationary entanglement between two optomechanical oscillators by Coulomb interaction with Kerr medium
Tian-Le Yang(杨天乐), Chen-Long Zhu(朱陈龙), Sheng Liu(刘声), and Ye-Jun Xu(许业军). Chin. Phys. B, 2021, 30(12): 124201.
[6] Single-channel vector magnetic information detection method based on diamond NV color center
Qin-Qin Wang(王琴琴), Rui-Rong Wang(王瑞荣), Jin-Ping Liu(刘金萍), Shao-Zhuo Lin(林绍卓), Liang-Wei Wu(武亮伟), Hao Guo(郭浩), Zhong-Hao Li(李中豪), Huan-Fei Wen(温焕飞), Jun Tang(唐军), Zong-Min Ma(马宗敏), and Jun Liu (刘俊). Chin. Phys. B, 2021, 30(8): 080701.
[7] Optimized pulse for stimulated Raman adiabatic passage on noisy experimental platform
Zhi-Ling Wang(王志凌), Leiyinan Liu(刘雷轶男), and Jian Cui(崔健). Chin. Phys. B, 2021, 30(8): 080305.
[8] Lie transformation on shortcut to adiabaticity in parametric driving quantum systems
Jian-Jian Cheng(程剑剑), Yao Du(杜瑶), and Lin Zhang(张林). Chin. Phys. B, 2021, 30(6): 060302.
[9] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[10] Taking tomographic measurements for photonic qubits 88 ns before they are created
Zhibo Hou(侯志博), Qi Yin(殷琪), Chao Zhang(张超), Han-Sen Zhong(钟翰森), Guo-Yong Xiang(项国勇), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), Geoff J. Pryde, and Anthony Laing. Chin. Phys. B, 2021, 30(4): 040304.
[11] A proposal for preparation of cluster states with linear optics
Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏). Chin. Phys. B, 2021, 30(3): 030306.
[12] Fast generation of W state via superadiabatic-based shortcut in circuit quantum electrodynamics
Xue-Mei Wang(王雪梅), An-Qi Zhang(张安琪), Peng Xu(许鹏, and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2021, 30(3): 030307.
[13] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[14] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[15] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
No Suggested Reading articles found!