|
|
Entanglement and decoherence of coupled superconductor qubits in a non-Markovian environment |
Ji Ying-Hua(嵇英华)a)b)† and Hu Ju-Ju(胡菊菊) a)c) |
a College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China; b Key Laboratory of Optoelectronic and Telecommunication of Jiangxi, Nanchang 330022, China; c School of Optical-Electrical Information and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China |
|
|
Abstract The sudden death of entanglement is investigated for the non-Markovian dynamic process of a pair of interacting flux qubits under a thermal bath. The results show that, for initially two-qubit entangled states, entanglement sudden death (ESD) always happens in the thermal reservoir, where its appearance strongly depends on the environment. In particular, ESD of the qubits occurs more easily for the non-Markovian process than for the Markovian one.
|
Received: 26 September 2009
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
Fund: Project supported by the National
Natural Science Foundation of China (Grant No.~10864002). |
Cite this article:
Ji Ying-Hua(嵇英华) and Hu Ju-Ju(胡菊菊) Entanglement and decoherence of coupled superconductor qubits in a non-Markovian environment 2010 Chin. Phys. B 19 060304
|
[1] |
Jones J A, Vedral V, Ekert A and Castagnoli G 2000 Nature (London) 403 869
|
[2] |
Duan L M, Cirac J I and Zoller P 2001 Science 292 1695
|
[3] |
Wang Z S, Kwek L C, Lai C H and Oh C H 2005 Euro. Phys. J. D 33 285
|
[4] |
Merzbacher E 1970 Quantum Mechanics (New York: John Wiley &Sons Inc.) Chap. 13 p.~276
|
[5] |
Jones J A, Mosca M and Hansen R H 1998 Nature (London) 393 344
|
[6] |
Yang C P and Han S 2006 Phys. Rev. A 73 032317
|
[7] |
Wang Z S, Wu C F, Feng X L, Kwek L C, Lai C H, Oh C H and Vedral V 2007 Phys. Rev. A 76 044303
|
[8] |
Wang Z S 2009 Phys. Rev. A 79 024304
|
[9] |
Wang Z S, Liou G Q and Ji Y H 2009 Phys. Rev . A 79 054301
|
[10] |
Chen Z Q, Wang J Q, Li X L, Ji Y H, Zhang B R, Jiang Y Y and Wang Z S 2009 Int. J. Theor. Phys. 48 2904
|
[11] |
Yan X B and Wang S J 2006 Acta Phys. Sin. 55 1591 (in Chinese)
|
[12] |
Bennett C H, Brassard G, Crepeau C, Josza R, Peres A and Wootters W K 1993 Phys. Rev. Lett . 70 1895
|
[13] |
Jiang D Y, Wu R, Li S S and Wang Z S 2009 Int. J. Theor. Phys . 48 2297
|
[14] |
Cai X H, Guo J R, Nie J J and Jia J P 2006 Chin. Phys. 15 488
|
[15] |
Bennett C H and Wiesner S J 1992 Phys. Rev. Lett . 69 2881
|
[16] |
Ekert A K 1991 Phys. Rev. Lett . 67 661
|
[17] |
Murao M, Jonathan D, Plenio M B and Vedral V 1999 Phys. Rev. A 59 156
|
[18] |
Yu T and Eberly J H 2004 Phys. Rev. Lett . 93 140404
|
[19] |
Mintert F, Carvalho A R R, Kus M and Buchleitner A 2005 Phys. Rep . 415 207
|
[20] |
Yu T and Eberly J H 2009 Science 323 598
|
[21] |
Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Souto Ribeiro P H and Davidovich L 2007 Science 316 579
|
[22] |
Benatti F and Floreanini R 2006 J. Phys. A 39 2689
|
[23] |
Paz J P and Roncaglia A J 2008 Phys. Rev. Lett . 100 220401
|
[24] |
Abdel-Aty Mahmoud and Yu T 2009 J. Phys. B 41 235503
|
[25] |
Ficek Z and Tanas R 2008 Phys. Rev . A 77 054301
|
[26] |
Scala M, Militello B, Messina A, Piiol J and Maniscalco S 2007 Phys. Rev . A 75 013811
|
[27] |
Breuer H P and Petruccione F 2002 The Theory of Open Quantum Suystems (New York: Oxford University Press)
|
[28] |
Leggett A J, Chakravarty S and Dorsey A T 1987 Rev. Mod. Phys. 59 1
|
[29] |
Mazzola L, Maniscalco S, Piilo J, Suominen K A and Garraway B M 2009 Phys. Rev . A 80 012104
|
[30] |
Scala M, Militello B, Messina A, Piilo J and Suominen K A 2008 Phys. Rev. A 77 043827
|
[31] |
Yang C P and Han S 2006 Phys. Rev. A 74 044302
|
[32] |
Yu Y, Han S Y, Chu X, Chu S I and Wang Z 2002 Science 296 889
|
[33] |
Jones J A, Mosca M and Hansen R H 1998 Nature (London) 393 344
|
[34] |
Weiss U 1999 Quantum Dissipative Systems (Singapore: World Scientific)
|
[35] |
Burkard G, Koch R H and DiVincenzo D P 2004 Phys. Rev. A 69 064503
|
[36] |
Wang Z S, Kwek L C, Lai C H and Oh C H 2006 Europhys. Lett. 74 958
|
[37] |
Wang Z S, Wu C F, Feng X L, Kwek L C, Lai C H and Oh C H 2007 Phys. Rev. A 75 024102
|
[38] |
Wang Z S and Wu R S 2009 Int. J. Theor. Phys. 48 1859
|
[39] |
Wang Z S 2009 Int. J. Theor. Phys. 48 2353
|
[40] |
Bellomo B, Lo Franco R and Compagno G 2008 Phys. Rev. A 77 032342
|
[41] |
Sinayskiy I, Ferraro E, Napoli A, Messina A and Petruccione F 2009 quant-ph arXiv:0906.1796
|
[42] |
Wootters W K 1998 Phys. Rev. Lett . 80 2245
|
[43] |
Ikram M, Li F L and Suhail Zubairy M 2007 Phys. Rev . A 75 062336
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|