|
|
Quantum broadcast communication and authentication protocol with a quantum one-time pad |
Chang Yan (昌燕)a b, Xu Chun-Xiang (许春香)a, Zhang Shi-Bin (张仕斌)a b, Yan Li-Li (闫丽丽)b |
a School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China;
b Department of Network Engineering, Chengdu University of Information Technology, Chengdu 610225, China |
|
|
Abstract A quantum broadcast communication and authentication protocol with a quantum one-time pad based on the Greenberger–Horne–Zeilinger state is proposed. A binary string is used to express the identity of the receiver, which is encoded as a single sequence of photons. The encoded photon sequence acts as a detection sequence and implements authentication. An XOR operation serves as a one-time pad and is used to ensure the security of the protocol. The binary string is reused even in a noisy channel and proves to be unconditionally secure. In contrast with the protocols proposed by Wang et al. [Chin. Phys. 16 1868 (2007)] and Yang et al. [Chin. Phys. B 19 070304 (2010)], the protocol in this study implements the identity authentication with a reusable binary string; no hash function or local unitary operation is used. The protocol in this study is also easier to implement and highly efficient without losing security.
|
Received: 19 June 2013
Revised: 25 July 2013
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.-a
|
(Quantum information)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61370203), the Science and Technology Support Project of Sichuan Province, China (Grant No. 13ZC2138), and the Fund for Young Persons Project of Sichuan Province, China (Grant No. 12ZB017). |
Corresponding Authors:
Chang Yan
E-mail: cyttkl@cuit.edu.cn
|
Cite this article:
Chang Yan (昌燕), Xu Chun-Xiang (许春香), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽) Quantum broadcast communication and authentication protocol with a quantum one-time pad 2014 Chin. Phys. B 23 010305
|
[1] |
Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. Comput. Syst. Signal Processing (New York: IEEE) p. 175
|
[2] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[3] |
Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
|
[4] |
Deng F G and Long G L 2003 Phys. Rev. A 68 042315
|
[5] |
Li X H, Deng F U and Zhou H Y 2008 Phys. Rev. A 78 022321
|
[6] |
Bennett C H 1993 Phys. Rev. Lett. 70 1895
|
[7] |
Yan F L and Wang D 2003 Phys. Lett. A 316 297
|
[8] |
Zhan Y B 2004 Chin. Phys. 13 1801
|
[9] |
Deng F G, Li C Y, Li Y S, Zhou H Y and Wang Y 2005 Phys. Rev. A 72 022338
|
[10] |
Li Y L and Feng J 2007 Acta Phys. Sin. 56 1888 (in Chinese)
|
[11] |
Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
|
[12] |
Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162
|
[13] |
Xiao L, Long G L, Deng F G and Pan J W 2004 Phys. Rev. A 69 052307
|
[14] |
Chen P, Deng F G and Long G L 2006 Chin. Phys. 15 2228
|
[15] |
Han L F, Liu Y M, Yuan H and Zhang Z J 2007 Chin. Phys. Lett. 24 3312
|
[16] |
Zhou P, Li X H, Deng F G and Zhou H Y 2007 Chin. Phys. Lett. 24 2181
|
[17] |
Long G L and Liu X S 2002 Phys. Rev. A 65 032302
|
[18] |
Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
|
[19] |
Deng F G and Long G L 2004 Phys. Rev. A 69 052319
|
[20] |
Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
|
[21] |
Wang C, Deng F G and Long G L 2005 Opt. Commun. 253 15
|
[22] |
Zhu A D, Xia Y, Fan Q B and Zhang S 2006 Phys. Rev. A 73 022338
|
[23] |
Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302
|
[24] |
Wang J, Zhang Q and Tang C J 2006 Phys. Lett. A 358 256
|
[25] |
Li X H, Deng F G, Li C Y, Liang Y J, Zhou P and Zhou H Y 2006 J. Korean Phys. Soc. 49 1354
|
[26] |
Wang J, Chen H Q, Zhang Q and Tang C J 2007 Acta Phys. Sin. 56 673 (in Chinese)
|
[27] |
Li X H, Li C Y, Deng F G, Zhou P, Liang Y J and Zhou H Y 2007 Chin. Phys. 16 2149
|
[28] |
Gao F, Guo F Z, Wen Q Y and Zhu F C 2009 Sci. China Ser. G Phys. Mech. Astron. 51 1853
|
[29] |
Li J, Jin H F and Jing B 2011 Sci. Chin. Phys. Mech. Astron. 54 1612
|
[30] |
Li J, Song D J, Guo X J and Jing B 2012 Chin. Phys. C 36 31
|
[31] |
Li J, Guo X J, Song D J, Xie F and Peng Y 2012 China Communications 9 111
|
[32] |
Li J, Jin H F and Jing B 2012 Chinese Science Bulletin 57 4434
|
[33] |
Yang J, Wang C and Zhang R 2010 Chin. Phys. B 19 110311
|
[34] |
Wang T J, Li T, Du F F and Deng F G 2011 Chin. Phys. Lett. 28 040305
|
[35] |
Gao F, Qin S J, Guo F Z and Wen Q Y 2011 Chin. Phys. Lett. 28 020303
|
[36] |
Gu B, Huang Y G, Fang X and Chen Y L 2011 Commun. Theor. Phys. 56 659
|
[37] |
Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
|
[38] |
Gu B, Zhang C Y, Cheng G S and Huang Y G 2011 Sci. China.Phys. Mech. Astron. 54 942
|
[39] |
Shi J, Gong Y X, Xu P, Zhu S N and Zhan Y B 2011 Commun. Theor. Phys. 56 831
|
[40] |
Gao G, Fang M, Wang L P and Cui X Y 2011 Int. J. Theor. Phys. 50 1726
|
[41] |
Huang W, Wen Q Y, Jia H Y, Qin S J and Gao F 2012 Chin. Phys. B 21 100308
|
[42] |
Sun Z W, Du R G and Long D Y 2012 Int. J. Theor. Phys. 51 1946
|
[43] |
Liu D, Chen J L and Jiang W 2012 Int. J. Theor. Phys. 51 2923
|
[44] |
Ren B C, Wei H R, Hua M, Li T and Deng F G 2013 Eur. Phys. J. D 67 30
|
[45] |
Fiat A and Naor M 1994 Advances in Cryptology-CRYPTO’93, Lecture Notes in Computer Science 773 480
|
[46] |
Li X H, Li C Y and Deng F G 2007 Chin. Phys. Lett. 24 23
|
[47] |
Wang J, Zhang Q and Tang C J 2007 Chin. Phys. 16 1868
|
[48] |
Yang Y G, Wang Y H and Wen Q Y 2010 Chin. Phys. B 19 070304
|
[49] |
Li C Y, Zhou H Y and Wang Y 2005 Chin. Phys. Lett. 22 1049
|
[50] |
Li C Y, Li X H and Deng F G 2006 Chin. Phys. Lett. 23 2897
|
[51] |
Deng F G, Long G L and Wang Y 2004 Chin. Phys. Lett. 21 2097
|
[52] |
Wen K, Deng F G and Long G L arXiv: 0706.3791v1 [quant-ph]
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|