Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 030302    DOI: 10.1088/1674-1056/26/3/030302
GENERAL Prev   Next  

Two-step quantum secure direct communication scheme with frequency coding

Xue-Liang Zhao(赵学亮)1, Jun-Lin Li(李俊林)1, Peng-Hao Niu(牛鹏皓)1, Hong-Yang Ma(马鸿洋)2, Dong Ruan(阮东)1
1 Department of Physics, Tsinghua University, Beijing 100084, China;
2 School of Science, Qingdao University of Technology, Qingdao 266000, China
Abstract  

Quantum secure direct communication (QSDC) is an important branch of quantum cryptography. It can transmit secret information directly without establishing a key first, unlike quantum key distribution which requires this precursory event. Here we propose a QSDC scheme by applying the frequency coding technique to the two-step QSDC protocol, which enables the two-step QSDC protocol to work in a noisy environment. We have numerically simulated the performance of the protocol in a noisy channel, and the results show that the scheme is indeed robust against channel noise and loss. We also give an estimate of the channel noise upper bound.

Keywords:  quantum cryptography      quantum secure direct communication      frequency coding  
Received:  19 October 2016      Revised:  15 December 2016      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11175094, 91221205, and 11547035) and the National Basic Research Program of China (Grant No. 2015CB921002).

Corresponding Authors:  Dong Ruan     E-mail:  dongruan@tsinghua.edu.cn

Cite this article: 

Xue-Liang Zhao(赵学亮), Jun-Lin Li(李俊林), Peng-Hao Niu(牛鹏皓), Hong-Yang Ma(马鸿洋), Dong Ruan(阮东) Two-step quantum secure direct communication scheme with frequency coding 2017 Chin. Phys. B 26 030302

[1] Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers Systems and Signal Processing (Bangalore, India) pp. 175-179
[2] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[3] Ekert A K 1991 Phys. Rev. Lett. 67 661
[4] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[5] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[6] Huttner B, Imoto N, Gisin N and Mor T 1995 Phys. Rev. A 51 1863
[7] Townsend P D 1997 Nature 385 47
[8] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[9] Goldenberg L and Vaidman L 1995 Phys. Rev. Lett. 75 1239
[10] Koashi M and Imoto N 1997 Phys. Rev. Lett. 79 2383
[11] Hwang W Y, Koh I G and Han Y D 1998 Phys. Lett. A 244 489
[12] Boström K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[13] Beige A, Englert B G, Kurtsiefer C and Weinfurter H 2002 Acta Phys. Pol. A 101 357
[14] Deng F G and Long G L 2004 Phys. Rev. A 70 012311
[15] Grosshans F and Van Assche G 2003 Nature 421 238
[16] Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[17] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[18] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[19] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[20] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
[21] Wang C, Deng F G and Long G L 2005 Opt. Commun. 253 15
[22] Shi J, Gong Y X, Xu P, Zhu S N and Zhan Y B 2011 Commun. Theor. Phys. 56 831
[23] Meslouhi A and Hassouni Y 2013 Quant. Inf. Proc. 12 2603
[24] Sun Z W, Du R G and Long D Y 2012 Int. J. Theor. Phys. 51 1946
[25] Zhang Q N, Li C C, Li Y H and Nie Y Y 2013 Int. J. Theor. Phys. 52 22
[26] Wang T J, Li T, Du F F and Deng F G 2011 Chin. Phys. Lett. 28 040305
[27] Chang Y, Zhang S B, Yan L L and Han G H 2015 Chin. Phys. B 24 080306
[28] Wang C, Liu J W, Chen X B, Bi Y G and Shang T 2015 Chin. Phys. B 24 040304
[29] Zou X F and Qiu D W 2014 Sci. China-Phys. Mech. Astron. 57 1696
[30] Xue P and Guo G C 2004 J. Phys. B: At. Mol. Opt. Phy. 37 711
[31] Lin S, Wen Q Y, Gao F and Zhu F C 2008 Phys. Rev. A 78 064304
[32] Yan F L and Zhang X Q 2004 Eur. Phys. J. B 41 75
[33] Wang J, Zhang Q and Tang C 2006 Phys. Lett. A 358 256
[34] Hong C H, Heo J, Lim J I and Yang H J 2014 Chin. Phys. B 23 090309
[35] Marino A M and Stroud Jr C R 2006 Phys. Rev. A 74 022315
[36] Reid M D 2013 Phys. Rev. A 88 062338
[37] Li X H 2015 Acta Phys. Sin. 64 0160307 (in Chinese)
[38] Ma H Y, Qin G Q, Fan X K and Chu P C 2015 Acta Phys. Sin. 64 0160306 (in Chinese)
[39] Lee H, Lim J and Yang H J 2006 Phys. Rev. A 73 042305
[40] Chamoli A and Bhandari C M 2009 Quantum Inf. Proc. 8 347
[41] Ye T Y 2013 Int. J. Quantum Inf. 11 1350051
[42] Yen C A, Horng S J, Goan H S, Kao T W and Chou Y H 2009 Quantum Inf. Comput. 9 376
[43] Yadav P, Srikanth R and Pathak A 2014 Quantum Inf. Proc. 13 2731
[44] Hassanpour S and Houshmand M 2015 Quantum Inf. Proc. 14 739
[45] Banerjee A and Pathak A 2012 Phys. Lett. A 376 2944
[46] Lucamarini M and Mancini S 2005 Phys. Rev. Lett. 94 140501
[47] Naseri M 2009 Opt Commun. 282 1939
[48] Shaari J S, Lucamarini M and Wahiddin M R B 2006 Phys. Lett. A 358 85
[49] An N B 2007 Phys. Lett. A 360 518
[50] Pirandola S, Mancini S, Lloyd S and Braunstein S L 2008 Nat. Phys. 4 726
[51] Shukla C, Pathak A and Srikanth R 2012 Int. J. Quantum Inf. 10 1241009.
[52] Gnatyuk S, Zhmurko T and Falat P 2015 Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS) IEEE 8th International Conference on. IEEE 1: 468-472
[53] Hong C H, Heo J O, Lim J I and Yang H J 2012 J. Korean Phys. Soc. 61 1
[54] Farouk A, Zakaria M, Megahed A and Omara F A 2015 Sci. Rep. 5 16080
[55] Nguyen B A 2004 Phys. Lett. A 328 6
[56] Pirandola S, García-Patrón R, Braunstein S L and Lloyd S 2009 Phys. Rev. Lett. 102 050503
[57] Tsai C W, Hsieh C R and Hwang T 2011 Eur. Phys. J. D 61 779
[58] Vasiliu E V 2011 Quantum Inf. Proc. 10 189
[59] Jahanshahi S, Bahrampour A and Zandi M H 2013 Quantum Inf. Proc. 12 2441
[60] Pavičić M 2013 Phys. Rev. A 87 042326
[61] Ostermeyer M and Walenta N 2008 Opt Commun. 281 4540
[62] Zawadzki P, Puchala Z and Miszczak J A 2013 Quantum Inf. Proc. 12 569
[63] Jain S, Muralidharan S and Panigrahi P K 2009 Europhys. Lett. 87 60008
[64] Sheikhehi F and Naseri M 2011 Int. J. Quantum Inf. 9 357
[65] Pathak A 2015 Quantum Inf. Proc. 14 2195
[66] Zawadzki P 2013 Quantum Inf. Proc. 12 149
[67] Li J, Sun F Q, Pan Z S, Nie J R, Chen Y H and Yuan K G 2015 Chin. Phys. Lett. 32 080301.
[68] Żukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71 4287
[69] Pan J W, Bouwmeester D, Weinfurter H and Zeilinger A 1998 Phys. Rev. Lett. 80 3891
[70] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
[71] Pan J W, Simon C, Brukner C and Zeilinger A 2001 Nature 410 1067
[72] Sheng Y B, Pan J, Guo R, Zhou L and Wang L 2015 Sci. China-Phys. Mech. Astron. 58 060301
[73] Du F F and Deng F G 2015 Sci. China-Phys. Mech. Astron. 58 040303
[74] Calderbank A R and Shor P W 1996 Phys. Rev. A. 54 1098
[75] Brassard G and Salrail L 1994 Euro-crypt 193, Lectures Notes in Computer Sciences Vol.765 (New York: Springer-Verlag) pp. 410-423
[76] Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S and Sanpera A 1996 Phys. Rev. Lett. 77 2818
[77] Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q and Long G L 2016 Light Sci. Appl. 5 e16144
[78] Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S and Guo G C 2016 Phys. Rev. A 93 022316
[1] Quantum private comparison of arbitrary single qubit states based on swap test
Xi Huang(黄曦), Yan Chang(昌燕), Wen Cheng(程稳), Min Hou(侯敏), and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2022, 31(4): 040303.
[2] Measurement-device-independent one-step quantum secure direct communication
Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2022, 31(12): 120303.
[3] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[4] Coherent attacks on a practical quantum oblivious transfer protocol
Guang-Ping He(何广平). Chin. Phys. B, 2018, 27(10): 100308.
[5] Probabilistic direct counterfactual quantum communication
Sheng Zhang(张盛). Chin. Phys. B, 2017, 26(2): 020304.
[6] Anonymous voting for multi-dimensional CV quantum system
Rong-Hua Shi(施荣华), Yi Xiao(肖伊), Jin-Jing Shi(石金晶), Ying Guo(郭迎), Moon-Ho Lee. Chin. Phys. B, 2016, 25(6): 060301.
[7] Cryptanalysis of quantum broadcast communication and authentication protocol with a one-time pad
Ya Cao(曹雅), Fei Gao(高飞). Chin. Phys. B, 2016, 25(11): 110305.
[8] Controlled mutual quantum entity authentication using entanglement swapping
Min-Sung Kang, Chang-Ho Hong, Jino Heo, Jong-In Lim, Hyung-Jin Yang. Chin. Phys. B, 2015, 24(9): 090306.
[9] Multi-user quantum key distribution with collective eavesdropping detection over collective-noise channels
Huang Wei (黄伟), Wen Qiao-Yan (温巧燕), Liu Bin (刘斌), Gao Fei (高飞). Chin. Phys. B, 2015, 24(7): 070308.
[10] Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state
Chang Yan (昌燕), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽), Han Gui-Hua (韩桂华). Chin. Phys. B, 2015, 24(5): 050307.
[11] Quantum secure direct communication network with hyperentanglement
Chang Ho Hong, Jino Heo, Jong In Lim, Hyung Jin Yang. Chin. Phys. B, 2014, 23(9): 090309.
[12] Quantum broadcast communication and authentication protocol with a quantum one-time pad
Chang Yan (昌燕), Xu Chun-Xiang (许春香), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽). Chin. Phys. B, 2014, 23(1): 010305.
[13] Steganalysis and improvement of a quantum steganography protocol via GHZ4 state
Xu Shu-Jiang (徐淑奖), Chen Xiu-Bo (陈秀波), Niu Xin-Xin (钮心忻), Yang Yi-Xian (杨义光). Chin. Phys. B, 2013, 22(6): 060307.
[14] Cryptanalysis and improvement of the controlled secure direct communication
Kao Shih-Hung, Hwang Tzonelih. Chin. Phys. B, 2013, 22(6): 060308.
[15] Quantum steganography with large payload based on dense coding and entanglement swapping of Greenberger-Horne-Zeilinger states
Ye Tian-Yu (叶天语), Jiang Li-Zhen (蒋丽珍). Chin. Phys. B, 2013, 22(5): 050309.
No Suggested Reading articles found!