|
|
Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state |
Chang Yan (昌燕), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽), Han Gui-Hua (韩桂华) |
Department of Network Engineering, Chengdu University of Information Technology, Chengdu 610225, China |
|
|
Abstract By using six-qubit decoherence-free (DF) states as quantum carriers and decoy states, a robust quantum secure direct communication and authentication (QSDCA) protocol against decoherence noise is proposed. Four six-qubit DF states are used in the process of secret transmission, however only the |0'> state is prepared. The other three six-qubit DF states can be obtained by permuting the outputs of the setup for |0'>. By using the |0'> state as the decoy state, the detection rate and the qubit error rate reach 81.3%, and they will not change with the noise level. The stability and security are much higher than those of the ping–pong protocol both in an ideal scenario and a decoherence noise scenario. Even if the eavesdropper measures several qubits, exploiting the coherent relationship between these qubits, she can gain one bit of secret information with probability 0.042.
|
Received: 22 September 2014
Revised: 26 November 2014
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.-a
|
(Quantum information)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Fund: Project Project Project of Sichuan Province of China (Grant No. 12ZB017), and the Foundation of Cyberspace Security Key Laboratory of Sichuan Higher Education Institutions, China (Grant No. szjj2014-074). |
Corresponding Authors:
Chang Yan
E-mail: cyttkl@cuit.edu.cn
|
About author: 03.67.Dd; 03.67.Hk; 03.67.-a; 03.65.Ud |
Cite this article:
Chang Yan (昌燕), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽), Han Gui-Hua (韩桂华) Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state 2015 Chin. Phys. B 24 050307
|
[1] |
Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. Comput. Syst. Signal Processing (New York: IEEE) p. 175
|
[2] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[3] |
Bennett C H 1992 Phys. Rev. Lett. 68 3121
|
[4] |
Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
|
[5] |
Long G L and Liu X S 2002 Phys. Rev. A 65 032302
|
[6] |
Boström K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
|
[7] |
Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
|
[8] |
Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
|
[9] |
Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302
|
[10] |
Long G L, Deng F G, Wang C and Li X H 2007 Front Phys. China 2 251
|
[11] |
Gao F, Qin S J and Guo F Z 2011 Chin. Phys. Lett. 28 020303
|
[12] |
Chang Y, Xu C X, Zhang S B and Yan L L 2014 Chin. Phys. B 23 010305
|
[13] |
Gao F, Liu B and Wen Q Y 2012 Opt. Express 20 17411
|
[14] |
Zou X F and Qiu D W 2014 Sci. China-Phys. Mech. Astron. 57 1696
|
[15] |
Zheng C and Long G F 2014 Sci. China-Phys. Mech. Astron. 57 1238
|
[16] |
Chang Y, Xu C X, Zhang S B and Yan L L 2014 Chin. Sci. Bull. 59 2541
|
[17] |
Pei C X, Han B B and Zhao N 2009 Acta Photon. Sin. 38 422
|
[18] |
Li J, Li L Y, Jin H F and Li R F 2013 Phys. Lett. A 377 2729
|
[19] |
Li Y B and Qin S J 2013 Quantum Inf. Process 12 2191
|
[20] |
Chen T Y, Zhang J, Boileau J C, Jin X M, Yang B, Zhang Q, Yang T, Laflamme R and Pan J W 2006 Phys. Rev. Lett. 96 150504
|
[21] |
MacWilliams F J and Sloane N J A 1977 The Theory of Error-Correcting Codes (New York: Noth-Holland)
|
[22] |
Shor P W 1995 Phys. Rev. A 52 R2493
|
[23] |
Laflamme R, Miquel C, Paz J P and Zurek W H 1996 Phys. Rev. Lett. 77 198
|
[24] |
Steane A M 1996 Phys. Rev. Lett. 77 793
|
[25] |
Wen K and Long G L 2010 Int. J. Quant. Inf. 8 697
|
[26] |
Zhang C M and Song X T 2014 Chin Sci. Bull. 59 2825
|
[27] |
Li X H 2010 Phys. Rev. A 82 044304
|
[28] |
Sheng Y B and Deng F G 2010 Phys. Rev. A 81 042332
|
[29] |
Xia Y, Fan L L and Hao S Y 2013 Quantum Inf. Process 12 3553
|
[30] |
Sheng Y B, Zhou L and Long G L 2013 Phys. Rev. A 88 022302
|
[31] |
Hou S Y, Sheng Y B, Feng G R and Long G L 2014 Quantum Information Processor
|
[32] |
Wang C, Zhang Y and Jin G S 2011 Phys. Rev. A 84 032307
|
[33] |
Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307
|
[34] |
Du F F, Li T, Ren B C, Wei H R and Deng F G 2012 J. Opt. Soc. Am. B 29 1399
|
[35] |
Ren B C, Du F F and Deng F G 2013 Phys. Rev. A 88 012302
|
[36] |
Wang T J and Long G L 2013 J. Opt. Soc. Am. B 30 1069
|
[37] |
Zhang R, Zhou S H, Cao C 2014 Sci. China-Phys. Mech. Astron. 57 1511
|
[38] |
Ren B C and Long G L 2014 Opt. Express 22 6547
|
[39] |
Xu G F and Long G L 2014 Scientific Reports 4 6814
|
[40] |
Wang X B 2004 Phys. Rev. A 69 022320
|
[41] |
Bourennane M, Eibl M and Gaertner S 2004 Phys. Rev. Lett. 92 107901
|
[42] |
Ji C H and Yee Y 2004 IEEE J. Sel. Top Quantum Electron. 10 545
|
[43] |
Cabello A 2007 Phys. Rev. A 75 020301
|
[44] |
Sun Y, Wen Q Y, Gao F and Zhu F C 2009 Phys. Rev. A 80 032321
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|