Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 090309    DOI: 10.1088/1674-1056/23/9/090309
GENERAL Prev   Next  

Quantum secure direct communication network with hyperentanglement

Chang Ho Honga b, Jino Heoa b, Jong In Lima b, Hyung Jin Yanga b c d
a Graduate School of Information Management and Security, Korea University, Seoul 136-701, Korea;
b Center for Information Security Technologies (CIST), Korea University, Seoul 136-701, Korea;
c Department of Physics, Korea University, Yeongi 339-700, Korea;
d Graduate School of Information Security (GSIS), Korea University, Seoul 136-701, Korea
Abstract  We propose a quantum secure direct communication protocol with entanglement swapping and hyperentanglement. Any two users, Alice and Bob, can communicate with each other in a quantum network, even though there is no direct quantum channel between them. The trust center, Trent, who provides a quantum channel to link them by performing entanglement swapping, cannot eavesdrop on their communication. This protocol provides a high channel capacity because it uses hyperentanglement, which can be generated using a beta barium borate crystal.
Keywords:  quantum secure direct communication      hyperentanglement  
Received:  05 December 2013      Revised:  08 April 2014      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the Ministry of Knowledge Economy, Korea, under the Information Technology Research Center (ITRC) support program (NIPA-2013-H0301-13-3007) supervised by the National IT Industry Promotion Agency, and the Research Foundation of Korea University.
Corresponding Authors:  Hyung Jin Yang     E-mail:  yangh@korea.ac.kr

Cite this article: 

Chang Ho Hong, Jino Heo, Jong In Lim, Hyung Jin Yang Quantum secure direct communication network with hyperentanglement 2014 Chin. Phys. B 23 090309

[1] Wootters W K and Zurek W H 1982 Nature 299 802
[2] Bennett C H and Brassad G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, December 10-12, 1984 Bangalore, India p. 175
[3] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[4] Ekert A K 1991 Phys. Rev. Lett. 67 66
[5] Song D 2004 Phys. Rev. A 69 034301
[6] Deng F G and Long G L 2004 Phys. Rev. A 70 012311
[7] Gisin N, Ribordy R, Tittel W and Zbindenet H 2002 Rev. Mod. Phys. 74 145
[8] Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
[9] Ling G L and Liu X S 2002 Phys. Rev. A 65 032302
[10] Hong C H, Heo J O, Khym G L, Lim J I, Hong S K and Yang H J 2010 Opt. Commun. 283 2644
[11] Li C Y, Zhou H Y, Wang Y and Deng F G 2005 Chin. Phys. Lett. 22 1049
[12] Deng F G, Xiao L and Long G L 2002 Chin. Phys. Lett. 19 893
[13] Beige A, Englert B G, Kurtsiefer C and Weinfurter H 2002 Acta Phys. Pol. A 101 357
[14] Boström K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[15] Long G L, Deng F G, Wang C, Li X H, Wen K and Wang W Y 2007 Front. Phys. Chin. 2 251
[16] Wang C, Deng F G, Li Y S, Zhou P and Zhou H Y 2005 Phys. Rev. A 71 044305
[17] Wang C, Deng F G and Long G L 2005 Opt. Commun. 253 15
[18] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[19] Lucamarini M and Mancini S 2005 Phys. Rev. Lett. 94 140501
[20] Wang J, Zhang Q and Tang C J 2006 Phys. Lett. A 358 256
[21] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[22] Zhu A D, Xia Y, Fan Q B and Zhang S 2006 Phys. Rev. A 73 022338
[23] Lee H Y, Lim J I and Yang H J 2006 Phys. Rev. A 73 042305
[24] Jin X R, Ji X, Zhang Y Q, Zhang S, Hong S K, Yeon K H and Um C I 2006 Phys. Lett. A 354 67
[25] Zhao R T, Guo Q, Chen L, Wang H F and Zhang S 2012 Chin. Phys. B 21 080303
[26] Wei T C, Barreiro J T and Kwiat P G 2007 Phys. Rev. A 75 060305
[27] Schuck C, Huber G, Kurtsiefer C and Weinfurter H 2006 Phys. Rev. Lett. 96 190501
[28] Walborn S P, Padua S and Monken C H 2003 Phys. Rev. A 68 042313
[29] Barbieri M, Vallone G, Mataloni P and Martini F D 2007 Phys. Rev. A 75 042317
[30] Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
[31] Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318
[32] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 042308
[33] Simon C and Pan J W 2002 Phys. Rev. Lett. 89 257901
[34] Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
[35] Wang T J, Li T, Du F F and Deng F G 2011 Chin. Phys. Lett. 28 040305
[36] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[37] Waks E, Zeevi A and Yamamoto Y 2002 Phys. Rev. A 65 052310
[38] Inamori H, Rallan L and Vedral V 2001 J. Phys. A 34 6913
[39] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
[40] Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S and Sanpera A 1996 Phys. Rev. Lett. 77 2818
[41] Deng F G 2011 Phys. Rev. A 83 062316
[42] Sheng Y B, Zhou L and Long G L 2013 Phys. Rev. A 88 022302
[43] Zheng Y Z, Guo G C and Ye P 2004 Chin. Phys. Lett. 21 9
[44] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[45] Yamamoto T, Koashi M and Imoto N 2001 Phys. Rev. A 64 012304
[46] Zhao Z, Yang T, Chen Y A, Zhang A N and Pan J W 2003 Phys. Rev. Lett. 90 207901
[47] Deng F G 2012 Phys. Rev. A 85 022311
[48] Du F F, Li T, Ren B C, Wei H R and Deng F G 2012 J. Opt. Soc. Am. B 29 1399
[49] Wang T J and Long G L 2013 2013 J. Opt. Soc. Am. B 30 1069
[50] Ren B C and Deng F G 2013 Laser Phys. Lett. 10 115201
[51] Luo M X, Chen X B, Yang Y X, Qu Z G and Wang X 2014 J. Opt. Soc. Am. B 31 67
[1] Measurement-device-independent one-step quantum secure direct communication
Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2022, 31(12): 120303.
[2] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[3] Two-step quantum secure direct communication scheme with frequency coding
Xue-Liang Zhao(赵学亮), Jun-Lin Li(李俊林), Peng-Hao Niu(牛鹏皓), Hong-Yang Ma(马鸿洋), Dong Ruan(阮东). Chin. Phys. B, 2017, 26(3): 030302.
[4] Cryptanalysis of quantum broadcast communication and authentication protocol with a one-time pad
Ya Cao(曹雅), Fei Gao(高飞). Chin. Phys. B, 2016, 25(11): 110305.
[5] Faithful deterministic secure quantum communication and authentication protocol based on hyperentanglement against collective noise
Chang Yan (昌燕), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽), Han Gui-Hua (韩桂华). Chin. Phys. B, 2015, 24(8): 080306.
[6] Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state
Chang Yan (昌燕), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽), Han Gui-Hua (韩桂华). Chin. Phys. B, 2015, 24(5): 050307.
[7] Complete hyperentangled state analysis and generation of multi-particle entanglement based on charge detection
Ji Yan-Qiang (计彦强), Jin Zhao (金钊), Zhu Ai-Dong (朱爱东), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(5): 050306.
[8] Quantum broadcast communication and authentication protocol with a quantum one-time pad
Chang Yan (昌燕), Xu Chun-Xiang (许春香), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽). Chin. Phys. B, 2014, 23(1): 010305.
[9] Quantum steganography with large payload based on dense coding and entanglement swapping of Greenberger-Horne-Zeilinger states
Ye Tian-Yu (叶天语), Jiang Li-Zhen (蒋丽珍). Chin. Phys. B, 2013, 22(5): 050309.
[10] Fault tolerant quantum secure direct communication with quantum encryption against collective noise
Huang Wei (黄伟), Wen Qiao-Yan (温巧燕), Jia Heng-Yue (贾恒越), Qin Su-Juan (秦素娟), Gao Fei (高飞). Chin. Phys. B, 2012, 21(10): 100308.
[11] A two-step quantum secure direct communication protocol with hyperentanglement
Gu Bin(顾斌), Huang Yu-Gai(黄余改), Fang Xia(方夏), and Zhang Cheng-Yi(张成义) . Chin. Phys. B, 2011, 20(10): 100309.
[12] Quantum broadcast communication with authentication
Yang Yu-Guang(杨宇光), Wang Ye-Hong(王叶红), and Wen Qiao-Yan(温巧燕). Chin. Phys. B, 2010, 19(7): 070304.
[13] Three-party quantum secret sharing of secure direct communication based on $\chi$-type entangled states
Yang Yu-Guang(杨宇光), Cao Wei-Feng(曹卫锋), and Wen Qiao-Yan(温巧燕). Chin. Phys. B, 2010, 19(5): 050306.
[14] Improving the security of secure deterministic communication scheme based on quantum remote state preparation
Qin Su-Juan(秦素娟) and Wen Qiao-Yan(温巧燕). Chin. Phys. B, 2010, 19(2): 020310.
[15] Faithful quantum secure direct communication protocol against collective noise
Yang Jing(杨静), Wang Chuan(王川), and Zhang Ru(张茹). Chin. Phys. B, 2010, 19(11): 110306.
No Suggested Reading articles found!