Unified treatment for accurate and fast evaluation of the Fermi-Dirac functions
I. I. Guseinov and B. A. Mamedov
Department of Physics, Faculty of Arts and Sciences, Onsekiz Mart University, ?anakkale, Turkey; Department of Physics, Faculty of Arts and Sciences, Gaziosmanpa?a University, Tokat, Turkey
Abstract A new analytical approach to the computation of the Fermi-Dirac (FD) functions is presented, which was suggested by previous experience with various algorithms. Using the binomial expansion theorem, these functions are expressed through the binomial coefficients and familiar incomplete Gamma functions. This simplification and the use of the memory of the computer for calculation of binomial coefficients may extend the limits to large arguments for users and result in speedier calculation, should such limits be required in practice. Some numerical results are presented for significant mapping examples and they are briefly discussed.
Keywords:
statistical
semiconductors
plasma physics
nuclear physics
Received: 02 October 2009
Accepted manuscript online:
PACS:
05.30.Fk
(Fermion systems and electron gas)
02.30.Lt
(Sequences, series, and summability)
02.30.Mv
(Approximations and expansions)
02.30.Sa
(Functional analysis)
Cite this article:
I. I. Guseinov and B. A. Mamedov Unified treatment for accurate and fast evaluation of the Fermi-Dirac functions 2010 Chin. Phys. B 19 050501
[1]
Blakemore J S 1962 Semiconductor Statistics (New York: Pergamon) p234
[2]
Blakemore J S 1982 Solid-State Electron. 25 1067
[3]
Dingle R B 1956 J. Appl. Res. B 6 225
[4]
Marshak A H, Shibib M A, Fossum J G and Lindholm F A 1981 IEEE Trans. Electron Devices ED-28 293
[5]
Stoner E C 1939 Phil. Mag. 28 257
[6]
Constantinescu D H and Moruzzi C 1978 Phys. Rev. D 18 1820
[7]
Gong Z, Dappen W and Zejda L 2001 Astrophys. J. 546 1178
[8]
Chandrasekhar S 1939 An Introduction to the Study of Stellar Structure (New York: Dover) p178
[9]
Clayton D D 1968 Principles of Steller Evolution and Nucleosyn-thesis (New York: McGraw-Hill) p247
[10]
Rhodes P 1950 Prog. R. Soc. London Ser. A 204 396
[11]
Wu Z Q, Li S C and Han G X 1996 JQSRT 56 623
[12]
Wilson B G and Chen M H 1999 JQSRT 61 813
[13]
Lampe M 1968 Phys. Rev. 170 306[13a] Lampe M 1968 Phys. Rev. 174 276
[14]
Hubbard W B and Lampe M 1969 Astrophys. J. Suppl. Ser. 18 297
[15]
Rinker G A 1985 Phys. Rev. B 31 4220
[16]
Fullerton L W and Rinker G A 1986 Comput. Phys. Commun. 39 181
[17]
Hite D, Boykin T B, Singh N and Shen D 2005 Am. J. Phys. 73 856
[18]
Li G Q, Shi J Q and Gao Q 1990 Nucl. Phys. A 515 273
[19]
Loss D and Schoeller H 1989 J. Stat. Phys. 54 765
[20]
Adawi I 1975 J. Stat. Phys. 12 263
[21]
Elton L R B 1961 Nuclear Sizes (New York: Oxford University Press) p65
[22]
Grypeos M E, Lalazissis S A, Mossen S E and Panos C P 1991 J. Phys. G: Nuc. Part. Phys. 17 1093
[23]
Bohr A and Mottelson B 1969 Nuclear Structure (New York: Benjamin)
[24]
Lukyanov V K 1995 J. Phys. G: Nuc. Part. Phys. 21 145
[25]
Sommerfeld A 1928 Z. Phys. 47 1
[26]
McDougall J and Stoner E C 1938 Philos. Trans. R. Soc. London Ser. A 237 67
[27]
Johnson V A and Shipley F M 1953 Phys. Rev. 90 523
[28]
Glasser M L 1964 J. Math. Phys. 5 1150
[29]
Battocletti F E 1965 Proc. IEEE 53 2162
[30]
Jones E L 1966 Proc. IEEE 54 708
[31]
Hill R N 1970 Am. J. Phys. 38 1440
[32]
Joyce W B and Dixon R W 1977 Appl. Phys. Lett. 31 354
[33]
Joyce W B 1978 Appl. Phys. Lett. 32 680
[34]
Gautschi W 1979 ACM Trans. Math. Software 5 482
[35]
Selvakumar C R 1982 Proc. IEEE 70 516
[36]
Abidi S T and Noor Mohammad S 1984 J. Appl. Phys. 56 3341
[37]
Kiess E 1987 Am. J. Phys. 55 1006
[38]
Ell C, Blank R, Benner S and Haung H 1989 J. Opt. Soc. Am. B 6 2006
[39]
Fernandez Velica F J 1984 Phys. Rev. A 30 1194
[40]
Didonato A R and Morris Jr A H 1987 ACM Trans. Math. Software 13 318
[41]
Gong H V 1991 Solid-State Electron. 34 489
[42]
Sagar R P 1991 Comput. Phys. Commun. 66 271
[43]
Cong H V and Doan-Khanh B 1992 Solid-State Electron. 35 949
[44]
Goano M 1993 Solid-State Electron. 36 217
[45]
Smith A W and Rohatgi A 1993 J. Appl. Phys. 73 7030
[46]
Antia H M 1993 Astrophys. J. Suppl. Ser. 84 101
[47]
Mohankumar N and Natarajan A 1996 Astrophys. J. 458 233
[48]
Uehling E A and Uhlenbeck G 1933 Phys. Rev. Lett. 43 552
[49]
Aparicio J M 1998 Astrophys. J. Suppl. Ser. 117 627
[50]
Lukyanov V K 1995 J. Phys. G 21 145
[51]
Goano M 1995 ACM T. Math. Software. 21 221
[52]
Ohsugi I J, Kojima T and Nishida I 1988 J. Appl. Phys. 63 5179
[53]
Chang T Y and Izabelle A 1989 J. Appl. Phys. 65 2162
[54]
Reser B I 1996 J. Phys.: Condens. Matter 8 3151
[55]
Gong Z, Dappen W and Zejda L 2001 Astrophys. J. 546 1178
[56]
Gong Z, Zejda L, Dappen W and Aparicio J M 2001 arXiv: astro-ph/0102329
[57]
Grypeos M, Koutroulos C, Lukyanov V and Shebeko A 1998 J. Phys. G: Nuc. Part. Phys. 24 1913
[58]
Mohankumar N, Kannan T and Kanmani S 2005 Comput. Phys. Commun. 168 71
[59]
Bhagat V, Bhattacharya R and Roy D 2003 Comput. Phys. Commun. 155 7
[60]
Garoni T M, Frankel N E and Glasser M L 2001 J. Math. Phys. 42 1860
[61]
Lether F G 2001 J. Sci. Comput. 16 69
[62]
Rzadkowski G and Lepkowski S 2008 J. Sci. Comput. 35 63
[63]
Gradshteyn I S and Ryzhik I M 1980 Tables of Integrals, Sums, Series and Products 4th ed. (New York: Academic Press)
[64]
Guseinov I I and Mamedov B A 2006 JQSRT 102 251
[65]
Mamedov B A 2005 JQSRT 94 507
[66]
Guseinov I I and Mamedov B A 2004 J. Math. Chem. 36 341
[67]
Guseinov I I and Mamedov B A 2005 J. Math. Chem. 38 311
[68]
Mamedov B A 2008 Comput. Phys. Commun. 178 673
[69]
Banuelos A, Depine R A and Mancini R C 1981 J. Math. Phys. 22 452
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics