Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 037204    DOI: 10.1088/1674-1056/19/3/037204
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic transport for armchair graphene nanoribbons with a potential barrier

Zhou Ben-Hu(周本胡)a), Duan Zi-Gang(段子刚)b), Zhou Ben-Liang(周本良)a), and Zhou Guang-Hui(周光辉)a)†
a Department of Physics, Hunan Normal University, Changsha 410081, China; b Institute of Optoelectronics, Shenzhen University, Shenzhen 518060, China
Abstract  This paper studies the electronic transport property through a square potential barrier in armchair-edge graphene nanoribbon (AGNR). Using the Dirac equation with the continuity condition for wave functions at the interfaces between regions with and without a barrier, we calculate the mode-dependent transmission probability for both semiconducting and metallic AGNRs, respectively. It is shown that, by some numerical examples, the transmission probability is generally an oscillating function of the height and range of the barrier for both types of AGNRs. The main difference between the two types of systems is that the magnitude of oscillation for the semiconducting AGNR is larger than that for the metallic one. This fact implies that the electronic transport property for AGNRs depends sensitively on their widths and edge details due to the Dirac nature of fermions in the system.
Keywords:  armchair-edge graphene nanoribbon      potential barrier      electronic transport  
Received:  07 April 2009      Revised:  02 July 2009      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  72.20.Dp (General theory, scattering mechanisms)  
Fund: Project supported by National Natural Science Foundation of China (Grant No.~10974052), and Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.~20060542002).

Cite this article: 

Zhou Ben-Hu(周本胡), Duan Zi-Gang(段子刚), Zhou Ben-Liang(周本良), and Zhou Guang-Hui(周光辉) Electronic transport for armchair graphene nanoribbons with a potential barrier 2010 Chin. Phys. B 19 037204

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y,Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Wallace P R 1947 Phys. Rev. 71 622
[3] Brey L and Fertig H A 2006 Phys. Rev. B 73 235411
[4] Zheng Y and Ando T 2002 Phys. Rev. B 65 245420
[5] Apalkov V M and Chakraborty T 2006 Phys. Rev. Lett.97 126801
[6] Sheng D N, Sheng L and Weng Z Y 2006 Phys. Rev. B77 233406
[7] Novoselov K S, Geim A K, Morozov S V, Jiang D, KatsnelsonM I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[8] Bai C X and Zhang X D 2007 Phys. Rev. B 76 075430
[9] Cheianov V V, Fal'ko V and Altshuler B L 2007 Science 315 1252
[10] Huard B, Sulpizio J A, Stander N, Todd K, Yang B andGoldhaber-Gordon D 2007 Phys. Rev. Lett. 98 236803
[11] Cheianov V V and Fal'ko V I 2006 Phys. Rev. B74 041403
[12] Katsnelson M I, Novoselov K S and Geim A K 2006 Nature Phys. 2 620
[13] Fistul M V and Efetov K B 2007 Phys. Rev. Lett. 98 256803
[14] Long W, Sun Q F and Wang J 2008 Phys. Rev. Lett. 101 166806
[15] Williams J R, Dicarlo L and Marcus C M 2007 Science 317 638
[16] Zhou J and Dong J M 2007 Appl. Phys.Lett. 91 173108
[17] Wang Z F, Shi Q W, Li Q X, Wang X P, Hou J G, Zheng H X,Yao Y and Chen J 2007Appl. Phys. Lett. 91 053109
[18] Huang B, Liu F, Wu J, Gu B L and Duan W H 2008 Phys. Rev. B 77 153411
[19] Lin Y M, Perebeinos V, Chen Z H and Avouris P 2008 Phys. Rev. B 78 161409
[20] Han M Y, ?zyilmaz B, Zhang Y B and Kim P 2007 Phys. Rev. Lett. 98 206805
[21] Liu J F, Wright A R, Zhang C and Ma Z S 2008 Appl.Phys. Lett. 93 041106
[22] Zhang Z Z, Chang K and Peeters F M 2008 Phys. Rev.B 77 235411
[23] Tworzyd?o J, Trauzettel B, Titov M, Rycerz A andBeenakker C W J 2006 Phys. Rev. Lett. 96 246802
[24] Xiao X B, Li X M and Zhou G H 2007 Acta Phys. Sin. 56 1649 (in Chinese)
[25] Liao W H, Gao Q X, Zhou G H 2007 Chin. Phys. 16 2106
[25] Ahsan Z M, Sabeeh K and Tahir M 2008 Phys. Rev. B78 165420
[1] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[2] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[3] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[4] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[5] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[6] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[7] Tuning transport coefficients of monolayer MoSi2N4 with biaxial strain
Xiao-Shu Guo(郭小姝) and San-Dong Guo(郭三栋). Chin. Phys. B, 2021, 30(6): 067102.
[8] Understanding of impact of carbon doping on background carrier conduction in GaN
Zhenxing Liu(刘振兴), Liuan Li(李柳暗), Jinwei Zhang(张津玮), Qianshu Wu(吴千树), Yapeng Wang(王亚朋), Qiuling Qiu(丘秋凌), Zhisheng Wu(吴志盛), and Yang Liu(刘扬). Chin. Phys. B, 2021, 30(10): 107201.
[9] Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide
Yanfeng Ge(盖彦峰), Yong Liu(刘永). Chin. Phys. B, 2019, 28(7): 077104.
[10] Influence of spin-orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls
Lian Liu(刘恋), Wen-Xiang Chen(陈文祥), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2018, 27(4): 047201.
[11] Electronic states and spin-filter effect in three-dimensional topological insulator Bi2Se3 nanoribbons
Genhua Liu(刘根华), Pingguo Xiao(肖平国), Piaorong Xu(徐飘荣), Huiying Zhou(周慧英), Guanghui Zhou(周光辉). Chin. Phys. B, 2018, 27(1): 017304.
[12] Spin-dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons
Kai-Wei Yang(杨开巍), Ming-Jun Li(李明君), Xiao-Jiao Zhang(张小姣), Xin-Mei Li(李新梅), Yong-Li Gao(高永立), Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2017, 26(9): 098509.
[13] Electronic transport properties of single-wall boron nanotubes
Xinyue Dai(代新月), Yi Zhou(周毅), Jie Li(李洁), Lishu Zhang(张力舒), Zhenyang Zhao(赵珍阳), Hui Li(李辉). Chin. Phys. B, 2017, 26(8): 087310.
[14] Electronic transport properties of lead nanowires
Lishu Zhang(张力舒), Yi Zhou(周毅), Xinyue Dai(代新月), Zhenyang Zhao(赵珍阳), Hui Li(李辉). Chin. Phys. B, 2017, 26(7): 073102.
[15] Generation of Fabry-Pérot oscillations and Dirac state in two-dimensional topological insulators by gate voltage
Bin Xu(徐斌), Rao Li(李饶), Hua-Hua Fu(傅华华). Chin. Phys. B, 2017, 26(5): 057303.
No Suggested Reading articles found!