Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 034202    DOI: 10.1088/1674-1056/19/3/034202
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Far-field superlens for nanolithography

Chen Jian(陈健), Wang Qing-Kang(王庆康), and Li Hai-Hua(李海华)
National Key Laboratory of Micro/Nano Fabrication Technology, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  A far-field optical lithography is developed in this paper. By designing the structure of a far-field optical superlens, lithographical resolution can be improved by using a conventional UV light source. The finite different time domain numerical studies indicate that the lithographic resolution at 50~nm line width is achievable with the structure shown in this paper by using 365~nm wavelength light, and the light can be transferred to a far distance in the photoresist.
Keywords:  far-field      lithography      superlens      resolution  
Received:  22 June 2009      Revised:  30 July 2009      Accepted manuscript online: 
PACS:  42.79.Bh (Lenses, prisms and mirrors)  
  42.82.Bq (Design and performance testing of integrated-optical systems)  
  42.82.Cr (Fabrication techniques; lithography, pattern transfer)  
  85.85.+j (Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)  
Fund: Project supported by the Shanghai Committee of Science and Technology of China (Grant No.~0852nm06600) and the National Natural Science Foundation of China(Grant No.~60808014).

Cite this article: 

Chen Jian(陈健), Wang Qing-Kang(王庆康), and Li Hai-Hua(李海华) Far-field superlens for nanolithography 2010 Chin. Phys. B 19 034202

[1] Levenson M D, Viswanathan N S and Simpson R A 1982 IEEE Trans. Electr. Dev. 29 1828
[2] Hong X G, Xu W D, Li X G, Zhao C Q and Tang X D 2008 Acta Phys. Sin .57 6643 (in Chinese)
[3] Fang L, Du J L, Guo X W, Wang J Q, Zhang Z Y, Luo X G and Du C L 2008 Chin. Phys. B 17 2499
[4] Melville D O S and Blaikie R J 2005 Opt. Express 13 2127
[5] Fang N, Lee H, Sun C and Zhang X 2005 Science 308 534
[6] Luo X G and Ishihara T 2004 Appl. Phys. Lett. 84 4780
[7] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[8] Srituravanich W, Durant S, Lee H, Sun C and Zhang X 2005 J. Vac. Sci. Technol . B23 2636
[9] Liu Z, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C and Zhang X2007 Nano Lett. 7 403
[10] Melville D O S and Blaikie R J 2007 Physica B 394 197
[11] Guo J and Adato R 2008 Opt. Express 16 1232
[12] Shao D B and Chen S C 2005 Appl. Phys. Lett. 86 253107
[13] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[14] Janssen O T A, Urbach H P and 't Hooft G W 2006 Opt. Express 14 11823
[15] Quong M C and Elezzabi A Y 2007 Opt. Express 15 10163
[16] Xiong Y, Liu Z, Durant S, Lee H, Sun C and Zhang X 2007 Opt. Express 15 7095
[17] Li X, He S and Jin Y 2007 Phys. Rev. B 75 045103
[18] Zhou Q, Zhu X and Li H F 2000 Acta Phys. Sin.49 210 (in Chinese)
[19] Hohng S C, Yoon Y C and Kim D S 2002 Appl. Phys. Lett. 81 3239
[20] Thio T, Ghaemi H F, Wolff P A and Ebbesen T W 1999 J. Opt. Soc. Am. B 16 1743
[21] Blaikie R J and Melville D O S 2005 J. Opt . A: Pure Appl. Opt . 7 176
[1] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[2] Quantitative ultrasound brain imaging with multiscale deconvolutional waveform inversion
Yu-Bing Li(李玉冰), Jian Wang(王建), Chang Su(苏畅), Wei-Jun Lin(林伟军), Xiu-Ming Wang(王秀明), and Yi Luo(骆毅). Chin. Phys. B, 2023, 32(1): 014303.
[3] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[4] A stopping layer concept to improve the spatial resolution of gas-electron-multiplier neutron detector
Jianjin Zhou(周建晋), Jianrong Zhou(周健荣), Xiaojuan Zhou(周晓娟), Lin Zhu(朱林), Jianqing Yang(杨建清), Guian Yang(杨桂安), Yi Zhang(张毅), Baowei Ding(丁宝卫), Bitao Hu(胡碧涛), Zhijia Sun(孙志嘉), Limin Duan(段利敏), and Yuanbo Chen(陈元柏). Chin. Phys. B, 2022, 31(5): 050702.
[5] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[6] Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens
Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳). Chin. Phys. B, 2022, 31(10): 104205.
[7] Magnetic-resonance image segmentation based on improved variable weight multi-resolution Markov random field in undecimated complex wavelet domain
Hong Fan(范虹), Yiman Sun(孙一曼), Xiaojuan Zhang(张效娟), Chengcheng Zhang(张程程), Xiangjun Li(李向军), and Yi Wang(王乙). Chin. Phys. B, 2021, 30(7): 078703.
[8] Collective excitations and quantum size effects on the surfaces of Pb(111) films: An experimental study
Yade Wang(王亚德), Zijian Lin(林子荐), Siwei Xue(薛思玮), Jiade Li(李佳德), Yi Li(李毅), Xuetao Zhu(朱学涛), and Jiandong Guo(郭建东). Chin. Phys. B, 2021, 30(7): 077308.
[9] Super-resolution imaging of low-contrast periodic nanoparticle arrays by microsphere-assisted microscopy
Qin-Fang Shi(石勤芳), Song-Lin Yang(杨松林), Yu-Rong Cao(曹玉蓉), Xiao-Qing Wang(王晓晴), Tao Chen(陈涛), and Yong-Hong Ye(叶永红). Chin. Phys. B, 2021, 30(4): 040702.
[10] Design and optimization of nano-antenna for thermal ablation of liver cancer cells
Mohammad Javad Rabienejhad, Azardokht Mazaheri, and Mahdi Davoudi-Darareh. Chin. Phys. B, 2021, 30(4): 048401.
[11] High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion
Yifang Li(李义方), Qinzhen Shi(石勤振), Ying Li(李颖), Xiaojun Song(宋小军), Chengcheng Liu(刘成成), Dean Ta(他得安), and Weiqi Wang(王威琪). Chin. Phys. B, 2021, 30(1): 014302.
[12] Improved spatial filtering velocimetry and its application in granular flow measurement
Ping Kong(孔平), Bi-De Wang(王必得), Peng Wang(王蓬), Zivkovic V, Jian-Qing Zhang(张建青). Chin. Phys. B, 2020, 29(7): 074201.
[13] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[14] Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging
Jingyuan Zhu(朱静远), Sichao Zhang(张思超), Shanshan Xie(谢珊珊), Chen Xu(徐晨), Lijuan Zhang(张丽娟), Xulei Tao(陶旭磊), Yuqi Ren(任玉琦), Yudan Wang(王玉丹), Biao Deng(邓彪), Renzhong Tai(邰仁忠), Yifang Chen(陈宜方). Chin. Phys. B, 2020, 29(4): 047501.
[15] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
No Suggested Reading articles found!