Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 027302    DOI: 10.1088/1674-1056/ab6717
Special Issue: SPECIAL TOPIC — Optical field manipulation
TOPICAL REVIEW—Optical field manipulation Prev   Next  

Research progress of femtosecond surface plasmon polariton

Yulong Wang(王玉龙)1, Bo Zhao(赵波)2, Changjun Min(闵长俊)1, Yuquan Zhang(张聿全)1, Jianjun Yang(杨建军)2, Chunlei Guo(郭春雷)2, Xiaocong Yuan(袁小聪)1
1 Nano Photonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China;
2 The Guo China-US Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Abstract  As the combination of surface plasmon polariton and femtosecond laser pulse, femtosecond surface plasmon polariton has both nanoscale spatial resolution and femtosecond temporal resolution, and thus provides promising methods for light field manipulation and light-matter interaction in extreme small spatiotemporal scales. Nowadays, the research on femtosecond surface plasmon polariton is mainly concentrated on two aspects: one is investigation and characterization of excitation, propagation, and dispersion properties of femtosecond surface plasmon polariton in different structures or materials; the other one is developing new applications based on its unique properties in the fields of nonlinear enhancement, pulse shaping, spatiotemporal super-resolved imaging, and others. Here, we introduce the research progress of properties and applications of femtosecond surface plasmon polariton, and prospect its future research trends. With the further development of femtosecond surface plasmon polariton research, it will have a profound impact on nano-optoelectronics, molecular dynamics, biomedicine and other fields.
Keywords:  surface plasmon polariton      femtosecond laser pulse      spatiotemporal super-resolution      nonlinear optics  
Received:  31 October 2019      Revised:  14 December 2019      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91750205, 61427819, U1701661, 11674178, and 61975128), the Leading Talents of Guangdong Province Program, China (Grant No. 00201505), the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2016A030312010 and 2017A030313351), the Science and Technology Innovation Commission of Shenzhen City (Grant Nos. JCYJ20180507182035270, KQTD2017033011044403, KQJSCX20170727100838364, ZDSYS201703031605029, and JCYJ2017818144338999), and the K. C. Wong Education Foundation (Grant No. GJTD-2018-08).
Corresponding Authors:  Changjun Min, Xiaocong Yuan     E-mail:  cjmin@szu.edu.cn;xcyuan@szu.edu.cn

Cite this article: 

Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪) Research progress of femtosecond surface plasmon polariton 2020 Chin. Phys. B 29 027302

[1] Ebbesen T H, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[2] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[3] Miyazaki H T and Kurokawa Y 2006 Phys. Rev. Lett. 96 097401
[4] Cirací C, Hill R T, Mock J J, Urzhumov Y, Fernández-Domínguez A I, Maier S A, Pendry J B, Chilkoti A and Smith D R 2012 Science 337 1072
[5] Kim S, Jin J, Kim Y J, Park I Y, Kim Y and Kim S W 2008 Nature 453 757
[6] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R and Feld M S 1997 Phys. Rev. Lett. 78 1667
[7] Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L and Tian Z Q 2010 Nature 464 392
[8] Du L P, Lei D Y, Yuan G H, Fang H, Zhang X, Wang Q, Tang D Y, Min C J, Maier S A and Yuan X C 2013 Sci. Rep. 3 3064
[9] Shen J F, Wang J, Zhang C J, Min C J, Fang H, Du L P, Zhu S W and Yuan X C 2013 Appl. Phys. Lett. 103 191119
[10] Pettinger B, Schambach P, Villagómez C J and Scott N 2012 Ann. Rev. Phys. Chem. 63 379
[11] Treffer R, Bohme R, Deckert-Gaudig T, Lau K, Tiede S, Lin X M and Deckert V 2012 Biochem. Soc. T 40 609
[12] Steidtner J and Pettinger B 2008 Phys. Rev. Lett. 100 236101
[13] Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L and Hou J G 2013 Nature 498 82
[14] Zhong J H, Jin X, Meng L Y, Wang X, Su H S, Yang Z L, Williams C T and Ren B 2017 Nat. Nanotechnol. 12 132
[15] Zayats A V, Smolyaninovb I I and Maradudin A A 2005 Phys. Rep. 408 131
[16] Dou X J, Min C J, Zhang Y Q and Yuan X C 2016 Acta Opt. Sin. 36 1026004
[17] Maier S A 2007 Plasmonics: Fundamentals and Applications (Springer Science + Business Media LLC) pp. 25-34
[18] Kretschmann E and Raether H 1968 Z. Naturforsch. 23 2135
[19] Zhang K, Du C G and Gao J C 2009 Acta Phys. Sin. 66 227302 (in Chinese)
[20] Otto A 1968 Z. Phys. 216 398
[21] Hecht B, Bielefeldt H, Novotny L, Inouye Y and Pohl D W 1996 Phys. Rev. Lett. 77 1889
[22] Hornauer D, Kapitza H and Raether H 1974 J. Phys. D: Appl. Phys. 7 L100
[23] Maiman T H 1960 Nature 187 493
[24] Spence D E, Kean P N and Sibbett W 1991 Opt. Lett. 16 42
[25] Nabekawa Y, Kuramoto Y, Togashi T, Sekikawa T and Watanabe S 1998 Opt. Lett. 23 1384
[26] Nisoli M, DeSilvestri S, Svelto O, Szipöcs R, Ferencz K, Spielmann C, Sartania S and Krausz F 1997 Opt. Lett. 22 522
[27] Adachi S, Ishii H, Kanai T, Ishii N, Kosuge A and Watanabe S 2007 Opt. Lett. 32 2487
[28] Matsubara E, Yamane K, Sekikawa T and Yamashita M 2007 J. Opt. Soc. Am. B 24 985
[29] Hannaford P 2000 Femtosecond laser spectroscopy (Boston: Springer) pp. 61-86
[30] Yamanouchi K 2002 Science 295 1659
[31] Peterman E J G, Monshouwer R, Stokkum I H M V, Grondelle R V and Amerongen H V 1997 Chem. Phys. Lett. 264 279
[32] Keller E L, Brandt N C, Cassabaum A A and Frontiera R R 2015 Analyst 140 4922
[33] Douhal A, Lahmani F and Zewail A H 1996 Chem. Phys. 207 477
[34] Point G, Brelet Y, Houard A, Jukna V, Milián C, Carbonnel J, Liu Y, Couairon A and Mysyrowicz A 2014 Phys. Rev. Lett. 112 223902
[35] Panagiotopoulos P, Whalen P, Kolesik M and Moloney J V 2015 Nat. Photon. 9 543
[36] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[37] Vozzi C, Calegari F, Ferrari F, Lucchini M, Silvestri S D, Svelto O, Sansone G, Stagira S and Nisoli M 2009 Laser Phys. Lett. 6 259
[38] Morimoto Y and Baum P 2018 Nat. Phys. 14 252
[39] Dudley J M, Finot C, Richardson D J and Millot G 2007 Nat. Phys. 3 597
[40] Kravtsov V, Ulbricht R, Atkin J M and Raschke M B 2016 Nat. Nanotechnol. 11 459
[41] Park I Y, Kim S, Choi J, Lee D H, Kim Y J, Kling M F, Stockman M I and Kim S W 2011 Nat. Photon. 5 677
[42] Jiang Y Q, Narushima T and Okamoto H 2010 Nat. Phys. 6 1005
[43] Zhang Y Q, Shen J F, Min C J, Jin Y F, Jiang Y Q, Liu J, Zhu S W, Sheng Y L, Zayats A V and Yuan X C 2018 Nano Lett. 18 5538
[44] Zhang N, Zhu X N, Yang J J, Wang X L and Wang M W 2007 Phys. Rev. Lett. 99 167602
[45] Nishiyama Y, Imaeda K, Imura K and Okamoto H 2015 J. Phys. Chem. C 119 16215
[46] Mårsell E, Losquin A, Svärd R, Miranda M, Guo C, Harth A, Lorek E, Mauritsson J, Arnold C L, Xu H X, Huillier A L and Mikkelsen A 2015 Nano Lett. 15 6601
[47] Gorkhover T, Schorb S, Coffee R et al 2016 Nat. Photon. 10 93
[48] Yalcin S E, Wang Y and Achermann M 2008 Appl. Phys. Lett. 93 101103
[49] Sámson Z L, Horak P, MacDonald K F and Zheludev N I 2011 Opt. Lett. 36 250
[50] Kubo A, Onda K, Petek H, Sun Z J, Jung Y S and Kim H K 2005 Nano Lett. 5 1123
[51] Ogawa S, Nagano H, Petek H and Heberle A P 1997 Phys. Rev. Lett. 78 1339
[52] Fecher G H, Schmidt O, Hwu Y and Schönhense G 2002 J. Electron. Spectrosc. 126 77
[53] Rotermund H H 1997 Sur. Sci. Rep. 29 265
[54] Kubo A, Pontius N and Petek H 2007 Nano Lett. 7 470
[55] Zhang L X, Kubo A, Wang L M, Petek H and Seideman T 2011 Phys. Rev. B 84 245442
[56] Wang W H and Zhang N 2018 Acta Phys. Sin. 67 247302 (in Chinese)
[57] Rewitz C, Keitzl T, Tuchscherer P, Huang J S, Geisler P, Razinskas G, Hecht B and Brixner T 2012 Nano Lett. 12 45
[58] Lemke C, Leißner T, Evlyukhin A, Radke J W, Klick A, Fiutowski J, Hansen J K, Rubahn H G, Chichkov B N, Carsten Reinhardt and Bauer M 2014 Nano Lett. 14 2431
[59] Sun Q, Ueno K, Yu H, Kubo A, Matsuo Y and Misawa H 2013 Light Sci. Appl. 2 e118
[60] Frank B, Kahl P, Podbiel D, Spektor G, Orenstein M, Fu L W, Weiss T, Hoegen M H V, Davis T J, Meyer zu Heringdorf F J and Giessen H 2017 Sci. Adv. 3 e1700721
[61] Ropers C, Neacsu C C, Elsaesser T, Albrecht M, Raschke M B and Lienau C 2007 Nano Lett. 7 2784
[62] Neacsu C C, Berweger S, Olmon R L, Saraf L V, Ropers C and Raschke M B 2010 Nano Lett. 10 592
[63] Müller M, Kravtsov V, Paarmann A, Raschke M B and Ernstorfer R 2016 ACS Photon. 3 611
[64] Berweger S, Atkin J M, Xu X G, Olmon R L and Raschke M B 2011 Nano Lett. 11 4309
[65] Neacsu C C, Reider G A and Raschke M B 2005 Phys. Rev. B 71 201402
[66] Li J M, Tang P, Wang J J, Huang T, Lin F, Fang Z Y and Zhu X 2015 Acta Phys. Sin. 64 194201 (in Chinese)
[67] Spektor G, Kilbane D, Mahro A K, Frank B, Ristok S, Gal L, Kahl P, Podbiel D, Mathias S, Giessen H, Meyer zu Heringdorf F J, Orenstein M and Aeschlimann M 2017 Science 355 1187
[68] Novotny L and Hulst N V 2011 Nat. Photon. 5 83
[69] Nahata A and Linke R A 2003 Opt. Lett. 28 423
[70] Pu Y, Grange R, Hsieh C L and Psaltis D 2010 Phys. Rev. Lett. 104 207402
[71] Zhang Y, Grady N K, Orozco C A and Halas N J 2011 Nano Lett. 11 5519
[72] Hanke T, Cesar J, Knittel V, Trügler A, Hohenester U, Leitenstorfer A and Bratschitsch R 2012 Nano Lett. 12 992
[73] Galanty M, Shavit O, Weissman A, Aharon H, Gachet D, Segal E and Salomon A 2018 Light Sci. Appl. 7 49
[74] Frontiera R R, Henry A, Gruenke N L and Duyne R P V 2011 J. Phys. Chem. Lett. 2 1199
[75] Roxworthy B J and Toussaint Jr K C 2012 Sci. Rep. 2 752
[76] Kotsifaki D G, Kandyla M and Lagoudakis P G 2016 Sci. Rep. 6 26275
[77] Shoji T, Saitoh J, Kitamura N, Nagasawa F, Murakoshi K, Yamauchi H, Ito S, Miyasaka H, Ishihara H and Tsuboi Y 2013 J. Am. Chem. Soc. 135 6643
[78] Joly A G, Gong Y, El-Khoury P Z and Hess W P 2018 J. Phys. Chem. Lett. 9 6164
[79] Mittal R, Glenn R, Saytashev I, Lozovoy V V and Dantus M 2015 J. Phys. Chem. Lett. 6 1638
[80] Vogelsang J, Hergert G, Wang D, Groß P and Lienau C 2018 Light Sci. Appl. 7 55
[81] Toma K, Masaki K, Kusaba M, Hirosawa K and Kannari F 2015 J. Appl. Phys. 118 103102
[82] Pisani F, Fedeli L and Macchi A 2018 ACS Photon. 5 1068
[83] MacDonald K F, Sámson Z L, Stockman M I and Zheludev N I 2009 Nat. Photon. 3 55
[84] MacDonald K F and Zheludev N I 2009 Laser Photon. Rev. 4 562
[85] Vorobyev A Y and Guo C L 2013 Laser Photon. Rev. 7 385
[86] Huang M, Zhao F, Cheng Y, Xu N and Xu Z Z 2009 ACS Nano 3 4062
[87] Wang L, Chen Q D, Cao X W, Buividas R, Wang X W, Juodkazis S and Sun H B 2017 Light Sci. Appl. 6 e17112
[88] Vorobyev A Y and Guo C L 2008 J. Appl. Phys. 104 063523
[89] Tang Y F, Yang J J, Zhao B, Wang M W and Zhu X N 2012 Opt. Express 20 25826
[90] Lou K, Qian S X, Wang X L, Li Y G, Gu B, Tu C H and Wang W T 2012 Opt. Express 20 120
[91] Shen M Y, Carey J E, Crouch C H, Kandyla M, Stone H A and Mazur E 2008 Nano Lett. 8 2087
[92] Xue L, Yang J J, Yang Y, Wang Y S and Zhu X N 2012 Appl. Phys. A 109 357
[93] Cong J, Yang J J, Zhao B and Xu X F 2015 Opt. Express 23 5357
[94] Qiao H Z, Yang J J, Wang F, Yang Y and Sun J L 2015 Opt. Express 23 26617
[95] Liu Q, Zhang N, Yang J J, Qiao H Z and Guo C L 2018 Opt. Express 26 11718
[96] Fraggelakisa F, Mincuzzia G, Lopez J, Hönninger I M and Kling R 2019 Appl. Sur. Sci. 470 677
[97] Buividas R, Stoddart P R and Juodkazis S 2012 Ann. Phys-Berlin 524 L5
[98] Vorobyev A Y, Makin V S and Guo C L 2009 Phys. Rev. Lett. 102 234301
[99] Hwang T Y, Vorobyev A Y and Guo C L 2009 Phys. Rev. B 79 085425
[1] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[2] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[3] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[4] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[5] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[6] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[7] Single-beam leaky-wave antenna with wide scanning angle and high scanning rate based on spoof surface plasmon polariton
Huan Jiang(蒋欢), Xiang-Yu Cao(曹祥玉), Tao Liu(刘涛), Liaori Jidi(吉地辽日), and Sijia Li(李思佳). Chin. Phys. B, 2022, 31(10): 104101.
[8] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[9] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[10] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[11] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[12] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[13] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[14] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[15] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
No Suggested Reading articles found!