Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 034201    DOI: 10.1088/1674-1056/19/3/034201
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Relationship between incident angle and dispersion in static large field of view polarization interference imaging spectrometer

Wu Jun-Fang(吴俊芳)a)b) and Zhang Chun-Min(张淳民)a)†
a School of Science, Xi'an Jiaotong University, Xi'an 710049, China; b School of Science, Xi'an Polytechnic University, Xi'an 710048, China
Abstract  The static large field of the view polarization interference imaging spectrometer is based on the modified Savart polariscope. There appears a dispersion between the ordinary ray and extraordinary ray when light passes through the modified Savart polariscope. The dispersion greatly influences the intensities and the results of the interferogram and target image in the static large field of the view polarization interference imaging spectrometer. At the same time, the incident angle determines the dispersion. When the light goes through the modified Savart polariscope, the dispersion occurs in the left plate, the half-wave plate and the right plate of the modified Savart polariscope. Using the extension of Snell's law, the dispersion in the crystal is theoretically calculated and numerically simulated separately. The relationship curve between incident angle and the dispersion is obtained by simulation.
Keywords:  imaging spectroscopy      dispersion      the modified Savart polariscope  
Received:  06 February 2009      Accepted manuscript online: 
PACS:  07.60.Fs (Polarimeters and ellipsometers)  
  42.30.-d (Imaging and optical processing)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the State Key Program of National Natural Science of China (Grant No.~40537031), National High Technology Research and Development Program of China (Grant No.~2006AA12Z152), the National Natural Science Foundation of China (Grant Nos.~40875013, 40375010 and 60278019), the Science and Technology Plan Foundation of Shaanxi Province, China (Grant No.~2005K04-G18).

Cite this article: 

Wu Jun-Fang(吴俊芳) and Zhang Chun-Min(张淳民) Relationship between incident angle and dispersion in static large field of view polarization interference imaging spectrometer 2010 Chin. Phys. B 19 034201

[1] Zhang C M, Xiang L B and Zhao B C In: 2000Lessard R A and Lampropoulos G A (eds). Applications of Photonic Technology 4 Proc. SPIE 4087 957
[2] Zhang C M, Xiang L B and Zhao B C 2004 J. Opt. A: Pure Appl. Opt . 6 1
[3] Zhang C M, Xiang L B and Zhao B C 2002 Opt. Commun . 203 21
[4] Zhang C M, Zhao B C and Xiang L B 2003 Opt. Commun. 227 221
[5] Zhang C M Static Polarization Interference Imaging Spectrometer Chinese Patent 01213109.1, 27 February 2002
[6] Zhang C M, Zhao B C and Xiang L B 2004 Appl. Opt . 43 6090
[7] Francon M and Mallick S 1971 Polarized Interferometer (New York: Wiley) pp24--25, pp139--140
[8] Wu J F, Zhang C M, Zhang Y T, Liu H C and Zhai X J 2008 Chin. Phys. B 17 2504
[9] Wu J F, Zhang C M, Yue R H and Li R L 2005 Commun. Theor. 43 687
[10] Wu J F and Liu H C 2009 Acta Opt. Sin. 29 93 (in Chinese)
[11] Wu J F and Zhang C M 2009 Sci. China Ser. G 52 1003
[12] Wu J F, Sun M Z and Zhang C M 2009 Acta Phys. Sin. 58 3844 (in Chinese)
[13] Wu J F and Zhang C M Optik
[http://dx.doi.org/10.1016/j.ijleo.2009.05.005.
[14] Zhang C M, Zhao B C, Yuan Z L and Huang W J 2009 J. Opt. A: Pure Appl Opt . 11 085401
[15] Wu J F and Liu H C 2009 Proc. SPIE 7279 72790R-1
[1] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[2] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[3] Kinetic Alfvén waves in a deuterium-tritium fusion plasma with slowing-down distributed α-particles
Fei-Fei Lu(路飞飞) and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(3): 035201.
[4] Spectral polarization-encoding of broadband laser pulses by optical rotatory dispersion and its applications in spectral manipulation
Xiaowei Lu(陆小微), Congying Wang(王聪颖), Xuanke Zeng(曾选科), Jiahe Lin(林家和), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Huangcheng Shangguan(上官煌城), Zhenkuan Chen(陈振宽), Shixiang Xu(徐世祥), and Jingzhen Li(李景镇). Chin. Phys. B, 2021, 30(7): 077801.
[5] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[6] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[7] Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band
Xin-Tong Zhang(张欣桐). Chin. Phys. B, 2021, 30(1): 014205.
[8] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[9] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[10] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe. Chin. Phys. B, 2020, 29(3): 030501.
[11] Graphene's photonic and optoelectronic properties-A review
A J Wirth-Lima, P P Alves-Sousa, W Bezerra-Fraga. Chin. Phys. B, 2020, 29(3): 037801.
[12] Study on dispersion characteristics of terahertz waves in helical waveguides
Jin-Hai Sun(孙金海), Shao-Hua Zhang(张少华), Xu-Tao Zhang(张旭涛), He Cai(蔡禾), Yong-Qiang Liu(刘永强), and Zeng-Ming Chao(巢增明)$. Chin. Phys. B, 2020, 29(11): 114301.
[13] Variable optical chirality in atomic assisted microcavity
Hao Zhang(张浩), Wen-Xiu Li (李文秀), Peng Han(韩鹏), Xiao-Yang Chang(常晓阳), Shuo Jiang(蒋硕), An-Ping Huang(黄安平), and Zhi-Song Xiao(肖志松). Chin. Phys. B, 2020, 29(11): 114207.
[14] Zitterbewegung of Dirac quasiparticles emerged in a Su-Schrieffer–Heeger lattice
Yue Hu(胡玥), Zheng-Xin Guo(郭政鑫), Ze-Ming Zhong(钟泽明), and Zhi Li(李志). Chin. Phys. B, 2020, 29(11): 110302.
[15] Exciton dynamics in different aromatic hydrocarbon systems
Milica Rutonjski†, Petar Mali, Slobodan Rado\v sevi\'c, Sonja Gombar, Milan Panti\'c, and Milica Pavkov-Hrvojevi\'c. Chin. Phys. B, 2020, 29(10): 107103.
No Suggested Reading articles found!