Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 020307    DOI: 10.1088/1674-1056/19/2/020307
GENERAL Prev   Next  

A criterion for quantum teleportation of an arbitrary N-particle state via a 2N-particle quantum channel

Liu Da-Ming(刘大明), Wang Yan-Wei(王艳伟), Jiang Xiu-Mei(江秀梅), and Zheng Yi-Zhuang(郑亦庄)
College of Physics and Electronic Information, Wenzhou University, Wenzhou 325035, China
Abstract  A criterion for he tquantum teleportation of an arbitrary N-particle state via a 2N-particle quantum channel is presented by introducing a term of the ``judgment operator''. Using the criterion, not only the qualitative judgment of the possibility of successful teleportation can be made but also the quantitative calculation of the probability of successful teleportation can be explicitly given. In addition, a new genuine four-qubit entangled state is proposed, which could not belong to the category of previously known states under stochastic local operations and classical communication.
Keywords:  teleportation criterion      judgment operator      generalized measurement base  
Received:  11 May 2009      Revised:  14 July 2009      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  

Cite this article: 

Liu Da-Ming(刘大明), Wang Yan-Wei(王艳伟), Jiang Xiu-Mei(江秀梅), and Zheng Yi-Zhuang(郑亦庄) A criterion for quantum teleportation of an arbitrary N-particle state via a 2N-particle quantum channel 2010 Chin. Phys. B 19 020307

[1] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K1993 Phys. Rev. Lett. 70 1895
[2] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A1997 Nature (London) 390 575
[3] Pan J W, Daniell M, Gasparoni S, Weihs G and Zeilinger A 2001 Phys. Rev. Lett. 86 4435
[4] Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J and Pan J W 2004 Nature (London) 430 54
[5] Lee J 2002 Phys. Rev.A 66 052318
[6] Rigolin G 2005 Phys. Rev.A 71 032303
[7] Yeo Y and Chua W K 2006 Phys. Rev. Lett. 96 060502
[8] Chen P X, Zhu S Y and Guo G C 2006 Phys. Rev.A 74 062324
[9] Liu Y, Yao C M and Guo G C 2001 Chin. Phys. 10 1001
[10] Zha X W and Song H Y 2007 Phys. Lett.A 369 377
[11] Wang X W, Shan Y G, Xia L X and Lu M W 2007 Phys. Lett.A 3 64 7
[12] Nie J, Li C and Yi X X 2008 Commun. Theor. Phys. 49 1491
[13] Yuan H C and Qi K G 2005 Chin. Phys. 141724
[14] Li W L, Li C F and Guo G C 2000 Phys. Rev.A 61 034303
[15] Gu Y J, Zheng Y Z and Guo G C 2001 Chin. Phys. Lett. 18 1543
[16] Fang J X, Lin Y S, Zhu S Q and Chen X F 2003 Phys. Rev.A 67 014305
[17] Pati A K and Agrawal P 2004 J. Opt.B: Quantum Semiclass. Opt. 6 844
[18] Gu Y J, Zheng Y Z and Guo G C 2002 Phys. Lett.A 296 157
[19] Yan F L and Ding H W 2006 Chin. Phys. Lett. 23 17
[20] Dong L, Xiu X M and Gao Y J 2006 Chin. Phys. 15 2835
[21] Li D C and Shi Z K 2008 Int. J. Theor. Phys. 47 2645
[22] Xia Y, Song J and Song H S 2008 Int. J. Theor. Phys. 47 1552
[23] Zeng J Y, Zhu H B and Pei S Y 2002 Phys. Rev.A 65 052307
[24] Zha X W and Ren K F 2008 Phys. Rev. A 77 014306
[25] Mor T 1996 arXiv:quant-ph/ 9608005v1.
[26] Chen X B, Wen Q Y, Xu G, Yang Y X and Zhu F C 2009 Phys. Rev.A 79036301
[27] Ryff L C 1999 Phys. Rev.A 60 5083
[28] Bennett C H 1996 Phys. Rev. Lett. 5 3 2046
[29] Osterloh A and Siewert J 2005 Phys. Rev.A 72 012337
[30] Wang X W and Yang G J 2008 Phys. Rev.A 78 024301
[31] Li D F, Li X R, Huang H T and Li X X 2006 Phys. Lett.A 359 428
[32] Deng F G 2005 Phys. Rev.A 72 036301
[1] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[2] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[3] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[4] Novel traveling quantum anonymous voting scheme via GHZ states
Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Chin. Phys. B, 2023, 32(2): 020303.
[5] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[6] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[7] Measurement-device-independent one-step quantum secure direct communication
Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2022, 31(12): 120303.
[8] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[9] Quantum routing of few photons using a nonlinear cavity coupled to two chiral waveguides
Jian-Shuang Liu(刘建双), Ya Yang(杨亚), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2022, 31(11): 110301.
[10] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[11] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[12] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[13] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[14] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[15] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
No Suggested Reading articles found!