Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 127203    DOI: 10.1088/1674-1056/19/12/127203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Design and manufacture of planar GaAs Gunn diode for millimeter wave application

Huang Jie(黄杰)a)b)†, Yang Hao(杨浩) a), Tian Chao(田超)a), Dong Jun-Rong(董军荣)a), Zhang Hai-Ying(张海英) a), and Guo Tian-Yi(郭天义)a)
a Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; b School of Physical Science and Technology, Southwest University, Chongqing 400715, China
Abstract  GaAs-based planar Gunn diodes with AlGaAs hot electron injector have been successfully developed to be used as a local oscillator of 76 GHz in monolithic millimeter-wave integrated circuits. We designed two kinds of structure diode, one has a fixed distance between the anode and cathode, but has variational cathode area, the other has a fixed cathode area, but has different distances between two electrodes. The fabrication of Gunn diode is performed in accordance with the order of operations: cathode defining, mesa etching, anode defining, isolation, passivation, via hole and electroplating. A peak current density of 29.5 kA/cm2 is obtained. And the characteristics of negative differential resistance and the asymmetry of the current–voltage curve due to the AlGaAs hot electron injector are discussed in detail. It is demonstrated that the smaller size of active area corresponds to the smaller current, and the shorter distance between anode and cathode also corresponds to the lower threshold voltage and higher peak current, and hot electron injector can effectively enhance the radio frequency conversion efficiency and output power.
Keywords:  GaAs      planar Gunn diode      hot electron injector      millimeter generation  
Received:  07 June 2010      Revised:  08 July 2010      Accepted manuscript online: 
PACS:  84.40.Dc (Microwave circuits)  
  84.40.Lj (Microwave integrated electronics)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Fg (Bulk semiconductor and conductivity oscillation devices (including Hall effect devices, space-charge-limited devices, and Gunn effect devices))  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 60806024) and the Fundamental Research Funds for Central University of China (Grant No. XDJK2009C020).

Cite this article: 

Huang Jie(黄杰), Yang Hao(杨浩), Tian Chao(田超), Dong Jun-Rong(董军荣), Zhang Hai-Ying(张海英), and Guo Tian-Yi(郭天义) Design and manufacture of planar GaAs Gunn diode for millimeter wave application 2010 Chin. Phys. B 19 127203

[1] Forster A, Lepsa M I, Freundt D and Montanari S 2007 Appl. Phys. A 87 545
[2] Kim M R, Lee S D, Chae Y K and Rhee J K 2008 IEICE Trans. Electron E91-C5 693
[3] Khalid A, Pilgrim N J, Dunn G M, Holland M C, Stanley C R, Thayne I G and Cumming D R S 2007 IEEE Electron Device Lett. 28 849
[4] Yoshida Y, Fukasawa Y, Deguchi T, Kawaguchi K, Sugiyama T and Nakagawa A 2005 35th European Microwave Conference Proceedings CNIT la defense Paris France p. 221
[5] Springer A L, Diskus C G, Lubke K and Thim H W 1995 IEEE Microwave and Guided Wave Lett. 5 114
[6] Herstellung J S 2003 Ph.D. Dissertation (Aachen: Uniersity of Aachen RWTH)
[7] Xu J B, Zhang H Y, Fu X J, Guo T Y and Huang J 2010 Chin. Phys. B 19 037302
[8] Jin Z, Su Y B, Cheng W, Liu X Y, Xu A H and Qi M 2008 Chin. Phys. Lett. 25 2686
[9] Li X, Liu L, Zhang H Y, Yin J J, Li H O, Ye T C and Gong M 2007 Acta Phys. Sin. 56 4117 (in Chinese)
[10] Hutchineson S, Stephens J, Carr M and Kelly M J 1996 Electron. Lett. 32 851
[11] Couch N R, Beton P H, Kelly M J, Kerr T M, Knight D J and Ondria J 1988 Solid-State Electron. 31 613
[12] Couch N R, Spooner H, Beton P H, Kelly M J, Lee M E, Rees P K and Kerr T M 1989 IEEE Electron Device Lett. 10 288
[13] Simone Montanari, Arno Forster, Mihail Ion Lepsa and Hans Luth 2005 Solid-State Electron. 49 245
[14] Arno Forster, Jurgen Stock, Simon Montanari, Mihail Ion Lepsa and Hans Luth 2006 Sensors 6 350
[15] Lee I H, Kim S M, Youn K K, Shin S H and Rhee J K 1992 Proc. Korea Institute of Telematics and Electronics Fall Conference November 1992 Seoul Korea p. 356
[1] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[4] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[5] Polarization-dependent ultrafast carrier dynamics in GaAs with anisotropic response
Ya-Chao Li(李亚超), Chao Ge(葛超), Peng Wang(汪鹏), Shuang Liu(刘爽), Xiao-Ran Ma(麻晓冉), Bing Wang(王冰), Hai-Ying Song(宋海英), and Shi-Bing Liu(刘世炳). Chin. Phys. B, 2022, 31(6): 067102.
[6] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[7] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[8] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[9] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[10] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[11] Terahertz generation and detection of LT-GaAs thin film photoconductive antennas excited by lasers of different wavelengths
Xin Liu(刘欣), Qing-Hao Meng(孟庆昊), Jing Ding(丁晶), Zhi-Chen Bai(白志晨), Jia-Hui Wang(王佳慧), Cong Zhang(张聪), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2022, 31(2): 028701.
[12] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[13] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
[14] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[15] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
No Suggested Reading articles found!