CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Spin-polarization-dependent transport in a quantum dot array coupled with an Aharonov–Bohm ring |
Wang Rui(王瑞)a)†, Kong Ling-Min(孔令民)a), Zhou Yun-Qing(周运清)a), Zhang Cun-Xi(张存喜)a), and Xing Zhi-Yong(邢志勇)b) |
a Department of Physics, Zhejiang Ocean University, Zhoushan 316000, China; b Xiamen Ocean Vocational College, Xiamen 361012, China |
|
|
Abstract In this paper the quantum transport in a dot-array coupled with an Aharonov–Bohm (AB) ring is investigated via single-band tight-binding Hamiltonian. It is shown that the output spin current is a periodic function of the magnetic flux in the quantum unit $\varPhi_0$. The resonance positions of the total transmission probability do not depend on the size of the AB ring but the electronic spectrum. Moreover, the persistent currents in the AB ring is also spin-polarization dependent and different from the isolated AB ring where the persistent current is independent of spin polarization.
|
Received: 12 March 2010
Revised: 03 August 2010
Accepted manuscript online:
|
PACS:
|
72.25.-b
|
(Spin polarized transport)
|
|
73.21.La
|
(Quantum dots)
|
|
73.23.Ra
|
(Persistent currents)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10947163 and 10947164). |
Cite this article:
Wang Rui(王瑞), Kong Ling-Min(孔令民), Zhou Yun-Qing(周运清), Zhang Cun-Xi(张存喜), and Xing Zhi-Yong(邢志勇) Spin-polarization-dependent transport in a quantum dot array coupled with an Aharonov–Bohm ring 2010 Chin. Phys. B 19 127202
|
[1] |
Chandrasekhar V, Webb R A, Brady M J, Ketchen M B, Gallagher W J and Kleinsasser A 1991 Phys. Rev. Lett. 67 3578
|
[2] |
Mailly D, Chapelier C and Benoit A 1993 Phys. Rev. Lett. 70 2020
|
[3] |
Keyser U F, Fühner C, Borck S and Hauh R J 2002 Semicond. Sci. Technol. 17 L22
|
[4] |
Orellana P A, Dominguez-Adame F, Gomez I and Ladron de Guevara M L 2003 Phys. Rev. B 67 085321
|
[5] |
Fuhrer A, Lüscher S, Ihn T, Heinzel T, Ensslin K, Wegscheiner W and Bichler M 2001 Nature (London) 413 385
|
[6] |
Yanson A I, Rubio-Bpllinger G, van den Brom H E, Agra "hit N and van Ruitenbeek J M 1998 Nature (London) 395 780
|
[7] |
Waugh F R, Berry M J, Crouch C H, Livermore C, Mar D J, Westervelt R M, Campman K L and Gossard A C 1996 Phys. Rev. B 53 1413
|
[8] |
Midori Kawamura, Neelima Paul, Vasily Cherepanov and Bert Voigtlanänder 2003 Phys. Rev. Lett. 91 096102
|
[9] |
Wang J M, Wang R, Zhang Y P and Liang J Q 2007 Chin. Phys. 16 2069
|
[10] |
Wang J M, Wang R and Liang J Q 2007 Chin. Phys. 16 2075
|
[11] |
Gao Y F, Zhang Y P and Liang J Q 2005 Chin. Phys. 14 196
|
[12] |
Kirczenow G 1989 Phys. Rev. B 39 10452
|
[13] |
Ulloa S E, Castavno E and Kirczenow G 1990 Phys. Rev. B 41 12350
|
[14] |
Brum J A 1991 Phys. Rev. B 43 12082
|
[15] |
Tamura H and Ando T 1991 Phys. Rev. B 44 1792
|
[16] |
Li Z J 2005 Chin. Phys. 14 2100
|
[17] |
Thouless D J and Kirkpatrick S 1981 J. Phys. C 14 235
|
[18] |
Lee P A and Fisher D S 1981 Phys. Rev. Lett. 47 882
|
[19] |
Schweizer L, Kramer B and Mackinnon A 1984 J. Phys. C 17 4111
|
[20] |
Schweizer L, Kramer B and Mackinnon A 1985 Z. Phys. B: Conden. Matter 59 379
|
[21] |
Mackinnon A 1985 Z. Phys. B: Conden. Matter 59 385
|
[22] |
Ando T 1991 Phys. Rev. B 44 8017
|
[23] |
Wang B G, Wang J and Guo H 2003 Phys. Rev. B 67 92408
|
[24] |
Sun Q F, Wang J and Guo H 2005 Phys. Rev. B 71 165310
|
[25] |
Xu H Q 2002 Phys. Rev. B 66 165305
|
[26] |
Büttiker M 1985 Phys. Rev. B 32 1846
|
[27] |
Jayanavar A M and Singha Deo P 1994 Phys. Rev. B 49 13685
|
[28] |
Shi J R and Gu B Y 1997 Phys. Rev. B 55 4703
|
[29] |
D'Amato Jorge L, Pastawski Horario M and Weisz Juan F 1989 Phys. Rev. B 39 3554
|
[30] |
Liu Y Y and Hui P M 1998 Phys. Rev. B 57 12994
|
[31] |
Cheung Ho-Fai and Riedel Eberhars K 1989 Phys. Rev. B 40 9498
|
[32] |
Chen Y, Xiong S J and Nagelou S R 1997 Phys. Rev. B 56 4778
|
[33] |
Carini J P, Muttalib K A and Nagel S R 1984 Phys. Rev. Lett. 53 102
|
[34] |
Orellana Pedro A, Lara G A and Anda Enrique V 2002 Phys. Rev. B 65 193307
|
[35] |
Liang J Q, Peng F and Ding X X 1995 Phys. Lett. A 201 369
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|