Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 017701    DOI: 10.1088/1674-1056/19/1/017701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Orientation-dependent electromagnetic properties of basalt fibre/nickel core--shell heterostructures

Kang Yu-Qing(康玉清)a), Cao Mao-Sheng(曹茂盛)a)†, Yuan Jie(袁杰)b)‡, and Fang Xiao-Yong(房晓勇)a)
a School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; b School of Information Engineering, Central University for Nationality, Beijing 100081, China
Abstract  The influence of orientation on electromagnetic properties of basalt fibre/nickel core--shell heterostructures prepared by a simple electroless plating method is investigated. For comparison, the same investigation is also performed on naked basalt fibres. For electromagnetic measurement, the directions of basalt fibre/nickel and naked basalt fibres are parallel, random and perpendicular to the direction of external electric field, termed E||  sample, random sample and E sample, respectively. Electromagnetic anisotropy can be clearly observed in the basalt fibre/nickel core--shell heterostructures, while electromagnetic properties of naked basalt fibres are unrelated to the orientation. The E basalt fibre/nickel shows the highest dielectric loss but the lowest magnetic loss, and E|| basalt fibre/nickel exhibits the highest magnetic loss but the lowest dielectric loss. The dielectric loss of E basalt fibre/nickel is several times as large as that of E|| basalt fibre/nickel, which could be attributed to the increase of polarization relaxation time as a consequence of the nanosize-confinement effect. The magnetic loss of E|| basalt fibre/nickel is even one order of magnitude higher than that of E basalt fibre/nickel, which originates mainly from the natural magnetic resonance of basalt fibre/nickel core--shell heterostructures.
Keywords:  one-dimensional materials      heterostructure      electromagnetic property      orientation  
Received:  21 May 2009      Revised:  26 May 2009      Accepted manuscript online: 
PACS:  77.22.Gm (Dielectric loss and relaxation)  
  75.60.-d (Domain effects, magnetization curves, and hysteresis)  
  77.22.Ej (Polarization and depolarization)  
  81.15.Pq (Electrodeposition, electroplating)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50872159), the National Defense Pre-Research Foundation of China (Grant Nos. 513180303 and A2220061080), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 2004007021).

Cite this article: 

Kang Yu-Qing(康玉清), Cao Mao-Sheng(曹茂盛), Yuan Jie(袁杰), and Fang Xiao-Yong(房晓勇) Orientation-dependent electromagnetic properties of basalt fibre/nickel core--shell heterostructures 2010 Chin. Phys. B 19 017701

[1] Mao C, Solis D J, Reiss B D, Kottmann S T, Sweeney R Y, Hayhurst A, Georgiou G, Iverson B and Belcher A M 2004 Science 303 213
[2] Xia Y N, Yang P D, Sun Y G, Wu Y Y, Mayers B, Gates B, Yin Y D, Kim F and Yan H Q 2003 Adv. Mater. 15 353
[3] Zou G Z, Cao M S, Lin H B, Jin H B, Kang Y Q and Chen Y J 2006 Powder Tech. 168 84
[4] Zou G Z, Cao M S, Zhang L, Li J G, Xu H and Chen Y J 2006 Surf. Coat. Tech. 201 108
[5] Wang W Z, Zeng B Q, Yang J, Poudel B, Huang J Y, Naughton M J and Ren Z F 2006 Adv. Mater. 18 3275
[6] Zhang X H, Zhang Y, Xu J, Wang Z, Chen X H, Yu D P, Zhang P, Qi H H and Tian Y J 2005 Appl. Phys. Lett. 87 123111
[7] Guo L, Ji Y L, Xu H B, Simon P and Wu Z Y 2002 J. Am. Chem. Soc. 124 14864
[8] Zhang D H, Liu Z Q, Han S, Li C, Lei B, Stewart M P, Tour J M and Zhou C W 2004 Nano. Lett. 4 2151
[9] Chueh Y L, Chou L J and Wang Z L 2006 Angew. Chem. Int. Ed. 45 7773
[10] Chen Y J, Zhu C L, Cao M S and Wang T H 2007 Nanotechnology 18 285502
[11] Chueh Y L, Hsieh C H, Chang M T, Chou L J, Lao C S, Song J H, Gan J Y and Wang Z L 2007 Adv. Mater. 19 143
[12] Che R C, Peng L M, Duan X F, Chen Q and Liang X L 2004 Adv. Mater. 16 401
[13] Che R C, Zhi C Y, Liang C Y and Zhou X G 2006 Appl. Phys. Lett. 88 033105
[14] Shi X L, Cao M S, Yuan J, Zhao Q L, Kang Y Q, Fang X Y and Chen Y J 2008 Appl. Phys. Lett. 93 183118
[15] Long Y Z, Yin Z H, Hui W, Chen Z J and Wan M X 2008 Chin. Phys. B 17 2707
[16] Long Y Z, Li M M, Sui W M, Kong Q S and Zhang L 2009 Chin. Phys. B 18 1221
[17] Wang Q, Li G J, Li D G, Lü X and He J C 2009 Chin. Phys. B 18 1843
[18] Liu G L, Yang Z H and Fang G L 2009 Acta Phys. Sin. 58 3364 (in Chinese)
[19] Zhou Y, Kang Y Q, Fang X Y, Yuan J, Shi X L, Song W L and Cao M S 2008 Chin. Phys. Lett. 25 1902
[20] Zou G Z, Cao M S, Zhang L, Jin H B, Xu H and Wang Z P 2006 J. Inorg. Mater. 21 797
[21] Mao Z Q, He Z H, Chen D H, Cheung W Y and Wong S P 2007 Solid State Commun. 142 329
[22] Knowles K M and Turan S 2000 Ultramicroscopy 83 245
[23] Bickermann M, Epelbaum B M, Heimann P, Herro Z G and Winnacker A 2005 Appl. Phys. Lett. 86 131904
[24] Cheng Z X, Kannan C V, Ozawa K, Kimura H and Wang X L 2006 Appl. Phys. Lett. 89 032901
[25] Cao G X and Chen X 2008 Int. J. Solids. Struct. 45 1730
[26] Zhong X L, Wang J B, Zheng X J, Zhou Y C and Yang G W 2004 Appl. Phys. Lett. 85 5661
[27] Oikawa T, Aratani M, Funakubo H, Saito K and Mizuhira M 2004 J. Appl. Phys. 95 3111
[28] Moon S E, Kim E K, Kwak M H, Ryu H C, Kim Y T, Kang K Y, Lee S J and Kim W J 2003 Appl. Phys. Lett. 83 2166
[29] Gu X K and Cao B Y 2007 Chin. Phys. 16 3777
[30] Ma H, Sun R Z, Li Z X and Liu Y F 2008 Chin. Phys. B 17 255
[31] Deng L G and Luo L Y 2007 Acta Phys. Sin. 56 1480 (in Chinese)
[32] Kang Y Q, Cao M S, Shi X L and Hou Z L 2007 Surf. Coat. Tech. 201 7201
[33] Calame J P, Abe D K, Levush B and Danly B G 2001 J. Appl. Phys. 89 5618
[34] Liu X G, Jiang J J, Geng D Y, Li B Q, Han Z, Liu W and Zhang Z D 2009 Appl. Phys. Lett. 94 053119
[35] Correia N T and Ramos J J M 2000 Phys. Chem. Chem. Phys. 2 5712
[36] Zhang X F, Dong X L, Huang H, Liu Y Y, Wang W N, Zhu X G, Lü B, Lei J P and Lee C G 2006 Appl. Phys. Lett. 89 053115
[37] Chen Y J, Gao P, Wang R X, Zhu C L, Wang L J, Gao M S and Jin H B 2009 J. Phys. Chem. C 113 10061
[1] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[2] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[3] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[6] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[7] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[8] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[9] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[10] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[11] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[12] Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction
Ming-Lang Wang(王明郎), Bo-Han Zhang(张博涵), Wen-Fei Zhang(张雯斐), Xin-Yue Tian(田馨月), Guang-Ping Zhang(张广平), and Chuan-Kui Wang(王传奎). Chin. Phys. B, 2022, 31(7): 077303.
[13] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[14] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[15] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
No Suggested Reading articles found!