Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(12): 5443-5450    DOI: 10.1088/1674-1056/18/12/052
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Kondo effect in a deformed molecule coupled asymmetrically to ferromagnetic electrodes

Wang Rui-Qiang(王瑞强)a)† and Jiang Kai-Ming(蒋开明)b)
a Laboratory of Quantum Information Technology, Institute for Condensed Matter Physics, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China; b Department of Physics, Shanghai Maritime University, Shanghai 201306, China
Abstract  The nonequilibrium Kondo effect is studied in a molecule quantum dot coupled asymmetrically to two ferromagnetic electrodes by employing the nonequilibrium Green function technique. The current-induced deformation of the molecule is taken into account, modeled as interactions with a phonon system, and phonon-assisted Kondo satellites arise on both sides of the usual main Kondo peak. In the antiparallel electrode configuration, the Kondo satellites can be split only for the asymmetric dot-lead couplings, distinguished from the parallel configuration where splitting also exists, even though it is for symmetric case. We also analyze how to compensate the splitting and restore the suppressed zero-bias Kondo resonance. It is shown that one can change the TMR ratio significantly from a negative dip to a positive peak only by slightly modulating a local external magnetic field, whose value is greatly dependent on the electron--phonon coupling strength.
Keywords:  Kondo effect      molecular spintronics      tunneling magnetoresistance      electron--phonon interaction      nonequilibrium Green function  
Received:  21 July 2009      Revised:  21 July 2009      Accepted manuscript online: 
PACS:  72.25.-b (Spin polarized transport)  
  72.15.Gd (Galvanomagnetic and other magnetotransport effects)  
  72.15.Qm (Scattering mechanisms and Kondo effect)  
  73.63.Kv (Quantum dots)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10974058), the Shanghai Natural Science Foundation of China (Grant No 09ZR1421400), Science and Technology Program of Shanghai Maritime University (Grant No 2008475), and Post

Cite this article: 

Wang Rui-Qiang(王瑞强) and Jiang Kai-Ming(蒋开明) Kondo effect in a deformed molecule coupled asymmetrically to ferromagnetic electrodes 2009 Chin. Phys. B 18 5443

[1] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[2] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[3] Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8
Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康). Chin. Phys. B, 2022, 31(6): 067104.
[4] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[5] Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states
Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2022, 31(10): 107101.
[6] Capacitive coupling induced Kondo-Fano interference in side-coupled double quantum dots
Fu-Li Sun(孙复莉), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), Yi-Jing Yan(严以京). Chin. Phys. B, 2020, 29(6): 067204.
[7] Tunneling magnetoresistance in ferromagnet/organic-ferromagnet/metal junctions
Yan-Qi Li(李彦琪), Hong-Jun Kan(阚洪君), Yuan-Yuan Miao(苗圆圆), Lei Yang(杨磊), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), Gui-Chao Hu(胡贵超). Chin. Phys. B, 2020, 29(1): 017303.
[8] Two-dimensional XSe2 (X=Mn, V) based magnetic tunneling junctions with high Curie temperature
Longfei Pan(潘龙飞), Hongyu Wen(文宏玉), Le Huang(黄乐), Long Chen(陈龙), Hui-Xiong Deng(邓惠雄), Jian-Bai Xia(夏建白), Zhongming Wei(魏钟鸣). Chin. Phys. B, 2019, 28(10): 107504.
[9] Phase diagram characterized by transmission in a triangular quantum dot
Jin Huang(黄金), Wei-Zhong Wang(王为忠). Chin. Phys. B, 2018, 27(11): 117303.
[10] Recent spinterfacial studies targeted to spin manipulation in molecular spintronic devices
Xian-Rong Gu(谷现荣), Li-Dan Guo(郭立丹), Xiang-Nan Sun(孙向南). Chin. Phys. B, 2018, 27(10): 107202.
[11] Voltage-controlled Kosterlitz-Thouless transitions and various kinds of Kondo behaviors in a triple dot device
Yong-Chen Xiong(熊永臣), Jun Zhang(张俊), Wang-Huai Zhou(周望怀), Amel Laref. Chin. Phys. B, 2017, 26(9): 097102.
[12] Spin-valley-dependent transport and giant tunneling magnetoresistance in silicene with periodic electromagnetic modulations
Yi-Man Liu(刘一曼), Huai-Hua Shao(邵怀华), Guang-Hui Zhou(周光辉), Hong-Guang Piao(朴红光), Li-Qing Pan(潘礼庆), Min Liu(刘敏). Chin. Phys. B, 2017, 26(12): 127303.
[13] Spin resonance transport properties of a single Au atom in S-Au-S junction and Au-Au-Au junction
Fangyuan Wang(王方原), Guiqin Li(李桂琴). Chin. Phys. B, 2016, 25(7): 077304.
[14] Tunneling magnetoresistance based on a Cr/graphene/Cr magnetotunnel junction
Luan Gui-Ping (栾桂苹), Zhang Pei-Ran (张沛然), Jiao Na (焦娜), Sun Li-Zhong (孙立忠). Chin. Phys. B, 2015, 24(11): 117201.
[15] Phonon-dependent transport through a serially coupled double quantum dot system
M. Bagheri Tagani, H. Rahimpour Soleimani. Chin. Phys. B, 2014, 23(5): 057302.
No Suggested Reading articles found!