Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 077304    DOI: 10.1088/1674-1056/25/7/077304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin resonance transport properties of a single Au atom in S-Au-S junction and Au-Au-Au junction

Fangyuan Wang(王方原), Guiqin Li(李桂琴)
Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  The spin transport properties of S-Au-S junction and Au-Au-Au junction between Au nanowires are investigated with density functional theory and the non-equilibrium Green's function. We mainly focus on the spin resonance transport properties of the center Au atom. The breaking of chemical bonds between anchor atoms and center Au atom significantly influences their spin transmission characteristics. We find the 0.8 eV orbital energy shift between anchor S atoms and the center Au atom can well protect the spin state stored in the S-Au-S junction and efficiently extract its spin state to the current by spin resonance mechanism, while the spin interaction of itinerant electrons and the valence electron of the center Au atom in the Au-Au-Au junction can extract the current spin information into the center Au atom. Fermi energy drift and bias-dependent spin filtering properties of the Au-Au-Au junction may transform information between distance, bias, and electron spin. Those unique properties make them potential candidates for a logical nanocircuit.
Keywords:  density functional theory      nonequilibrium Green function      spin resonance tunnelling  
Received:  07 April 2016      Accepted manuscript online: 
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  85.65.+h (Molecular electronic devices)  
  85.75.Mm (Spin polarized resonant tunnel junctions)  
Fund: Project supported by the National Basic Research Program of China (Grants No. 2011CB921602) and the National Natural Science Foundation of China (Grants No. 20121318158).
Corresponding Authors:  Guiqin Li     E-mail:  ligqin@mail.tsinghua.edu.cn

Cite this article: 

Fangyuan Wang(王方原), Guiqin Li(李桂琴) Spin resonance transport properties of a single Au atom in S-Au-S junction and Au-Au-Au junction 2016 Chin. Phys. B 25 077304

[1] Chen J, Reed M A, Rawlett A M and Tour J M 1999 Science 286 1550
[2] Tour J M 2000 Acc. Chem. Res. 33 791
[3] Wang X M, He J Z and Tang W 2009 Chin. Phys. B 18 984
[4] Zhao P, Wang P J, Zhang Z and Liu D S 2010 Chin. Sci. Bull. 55 1227
[5] Zhao P, Liu D S and Liang W 2012 Chin. Sci. Bull. 57 966
[6] Li Y, Wang L L, Wang X B, Yan L L, Su L X, Tian Y T and Li X J 2014 Chin. Phys. B 23 87307
[7] Gong W, Xu Z, Zhao S L, Liu X D, Fan X, Yang Q Q and Kong C 2014 Chin. Sci. Bull. 59 747
[8] Guo Z, Liu Y and Zhang X 2015 Sci. Bull. 60 320
[9] Fu C, He C, Tan L, Wang S, Shang L, Li L, Meng X and Liu H 2016 Sci. Bull. 61 282
[10] An X T and Diao S M 2014 Acta Phys. Sin. 63 187304 (in Chinese)
[11] Bai J Y, He Z L, Li L, Han G H, Zhang B L, Jiang P H and Fan Y H 2015 Acta Phys. Sin. 64 207304 (in Chinese)
[12] Liu F T, Cheng Y, Chen X R, Cheng X H and Zeng Z Q 2014 Acta Phys. Sin. 63 177304 (in Chinese)
[13] Yang Y E, Xiao Y, Yan X H and Dai C J 2015 Chin. Phys. B 24 117204
[14] Wernsdorfer W, Murugesu M and Christou G 2006 Phys. Rev. Lett. 96 057208
[15] Ren J F, Song R R, Yuan X B and Hu G C 2015 Sci. China-Phys. Mech. Astron. & Astronomy 58 1
[16] Shi H S and Grigoryan V L 2015 Chin. Phys. B 24 057202
[17] Deng X Q, Sun L and Li C X 2016 Acta Phys. Sin. 65 068503 (in Chinese)
[18] Jiang L N, Zhang Y B and Dong S L 2015 Acta Phys. Sin. 64 147104 (in Chinese)
[19] Shao H H, Guo D, Zhou B L and Zhou G H 2016 Chin. Phys. B 25 37309
[20] Filipović M, Holmqvist C, Haupt F and Belzig W 2013 Phys. Rev. B 87 045426
[21] Cremades E, Pemmaraju C D, Sanvito S and Ruiz E 2013 Nanoscale 5 4751
[22] Heersche H B, de Groot Z, Folk J A, van der Zant H S J, Romeike C, Wegewijs M R, Zobbi L, Barreca D, Tondello E and Cornia A 2006 Phys. Rev. Lett. 96 206801
[23] Chang P H, Markussen T, Smidstrup S, Stokbro K and Nikolić B K 2015 Phys. Rev. B 92 201406
[24] Sanvito S 2011 Chem. Soc. Rev. 40 3336
[25] Bogani L and Wernsdorfer W 2008 Nat. Mater. 7 179
[26] Lu D, Li H, Trottier D A, Li J, Brodutch A, Krismanich A P, Ghavami A, Dmitrienko G I, Long G, Baugh J and Laflamme R 2015 Phys. Rev. Lett. 114 140505
[27] Xin T, Li H, Wang B X and Long G L 2015 Phys. Rev. A 92 022126
[28] Lu D, Brodutch A, Li J, Li H and Laflamme R 2014 New J. Phys. 16 053015
[29] Zhang Y, Ryan C A, Laflamme R and Baugh J 2011 Phys. Rev. Lett. 107 170503
[30] Vincent R, Klyatskaya S, Ruben M, Wernsdorfer W and Balestro F 2012 Nature 488 357
[31] Rocha A R, García-Suárez V M, Bailey S, Lambert C, Ferrer J and Sanvito S 2006 Phys. Rev. B 73 085414
[32] Rungger I and Sanvito S 2008 Phys. Rev. B 78 035407
[33] Ohto T, Rungger I, Yamashita K, Nakamura H and Sanvito S 2013 Phys. Rev. B 87 205439
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
No Suggested Reading articles found!