CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Spin resonance transport properties of a single Au atom in S-Au-S junction and Au-Au-Au junction |
Fangyuan Wang(王方原), Guiqin Li(李桂琴) |
Department of Physics, Tsinghua University, Beijing 100084, China |
|
|
Abstract The spin transport properties of S-Au-S junction and Au-Au-Au junction between Au nanowires are investigated with density functional theory and the non-equilibrium Green's function. We mainly focus on the spin resonance transport properties of the center Au atom. The breaking of chemical bonds between anchor atoms and center Au atom significantly influences their spin transmission characteristics. We find the 0.8 eV orbital energy shift between anchor S atoms and the center Au atom can well protect the spin state stored in the S-Au-S junction and efficiently extract its spin state to the current by spin resonance mechanism, while the spin interaction of itinerant electrons and the valence electron of the center Au atom in the Au-Au-Au junction can extract the current spin information into the center Au atom. Fermi energy drift and bias-dependent spin filtering properties of the Au-Au-Au junction may transform information between distance, bias, and electron spin. Those unique properties make them potential candidates for a logical nanocircuit.
|
Received: 07 April 2016
Accepted manuscript online:
|
PACS:
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
85.65.+h
|
(Molecular electronic devices)
|
|
85.75.Mm
|
(Spin polarized resonant tunnel junctions)
|
|
Fund: Project supported by the National Basic Research Program of China (Grants No. 2011CB921602) and the National Natural Science Foundation of China (Grants No. 20121318158). |
Corresponding Authors:
Guiqin Li
E-mail: ligqin@mail.tsinghua.edu.cn
|
Cite this article:
Fangyuan Wang(王方原), Guiqin Li(李桂琴) Spin resonance transport properties of a single Au atom in S-Au-S junction and Au-Au-Au junction 2016 Chin. Phys. B 25 077304
|
[1] |
Chen J, Reed M A, Rawlett A M and Tour J M 1999 Science 286 1550
|
[2] |
Tour J M 2000 Acc. Chem. Res. 33 791
|
[3] |
Wang X M, He J Z and Tang W 2009 Chin. Phys. B 18 984
|
[4] |
Zhao P, Wang P J, Zhang Z and Liu D S 2010 Chin. Sci. Bull. 55 1227
|
[5] |
Zhao P, Liu D S and Liang W 2012 Chin. Sci. Bull. 57 966
|
[6] |
Li Y, Wang L L, Wang X B, Yan L L, Su L X, Tian Y T and Li X J 2014 Chin. Phys. B 23 87307
|
[7] |
Gong W, Xu Z, Zhao S L, Liu X D, Fan X, Yang Q Q and Kong C 2014 Chin. Sci. Bull. 59 747
|
[8] |
Guo Z, Liu Y and Zhang X 2015 Sci. Bull. 60 320
|
[9] |
Fu C, He C, Tan L, Wang S, Shang L, Li L, Meng X and Liu H 2016 Sci. Bull. 61 282
|
[10] |
An X T and Diao S M 2014 Acta Phys. Sin. 63 187304 (in Chinese)
|
[11] |
Bai J Y, He Z L, Li L, Han G H, Zhang B L, Jiang P H and Fan Y H 2015 Acta Phys. Sin. 64 207304 (in Chinese)
|
[12] |
Liu F T, Cheng Y, Chen X R, Cheng X H and Zeng Z Q 2014 Acta Phys. Sin. 63 177304 (in Chinese)
|
[13] |
Yang Y E, Xiao Y, Yan X H and Dai C J 2015 Chin. Phys. B 24 117204
|
[14] |
Wernsdorfer W, Murugesu M and Christou G 2006 Phys. Rev. Lett. 96 057208
|
[15] |
Ren J F, Song R R, Yuan X B and Hu G C 2015 Sci. China-Phys. Mech. Astron. & Astronomy 58 1
|
[16] |
Shi H S and Grigoryan V L 2015 Chin. Phys. B 24 057202
|
[17] |
Deng X Q, Sun L and Li C X 2016 Acta Phys. Sin. 65 068503 (in Chinese)
|
[18] |
Jiang L N, Zhang Y B and Dong S L 2015 Acta Phys. Sin. 64 147104 (in Chinese)
|
[19] |
Shao H H, Guo D, Zhou B L and Zhou G H 2016 Chin. Phys. B 25 37309
|
[20] |
Filipović M, Holmqvist C, Haupt F and Belzig W 2013 Phys. Rev. B 87 045426
|
[21] |
Cremades E, Pemmaraju C D, Sanvito S and Ruiz E 2013 Nanoscale 5 4751
|
[22] |
Heersche H B, de Groot Z, Folk J A, van der Zant H S J, Romeike C, Wegewijs M R, Zobbi L, Barreca D, Tondello E and Cornia A 2006 Phys. Rev. Lett. 96 206801
|
[23] |
Chang P H, Markussen T, Smidstrup S, Stokbro K and Nikolić B K 2015 Phys. Rev. B 92 201406
|
[24] |
Sanvito S 2011 Chem. Soc. Rev. 40 3336
|
[25] |
Bogani L and Wernsdorfer W 2008 Nat. Mater. 7 179
|
[26] |
Lu D, Li H, Trottier D A, Li J, Brodutch A, Krismanich A P, Ghavami A, Dmitrienko G I, Long G, Baugh J and Laflamme R 2015 Phys. Rev. Lett. 114 140505
|
[27] |
Xin T, Li H, Wang B X and Long G L 2015 Phys. Rev. A 92 022126
|
[28] |
Lu D, Brodutch A, Li J, Li H and Laflamme R 2014 New J. Phys. 16 053015
|
[29] |
Zhang Y, Ryan C A, Laflamme R and Baugh J 2011 Phys. Rev. Lett. 107 170503
|
[30] |
Vincent R, Klyatskaya S, Ruben M, Wernsdorfer W and Balestro F 2012 Nature 488 357
|
[31] |
Rocha A R, García-Suárez V M, Bailey S, Lambert C, Ferrer J and Sanvito S 2006 Phys. Rev. B 73 085414
|
[32] |
Rungger I and Sanvito S 2008 Phys. Rev. B 78 035407
|
[33] |
Ohto T, Rungger I, Yamashita K, Nakamura H and Sanvito S 2013 Phys. Rev. B 87 205439
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|