Special Issue:
SPECIAL TOPIC — A celebration of the 100th birthday of Kun Huang
|
SPECIAL TOPIC—A celebration of the 100th birthday of Kun Huang |
Prev
Next
|
|
|
Two-dimensional XSe2 (X=Mn, V) based magnetic tunneling junctions with high Curie temperature |
Longfei Pan(潘龙飞)1, Hongyu Wen(文宏玉)1, Le Huang(黄乐)2, Long Chen(陈龙)3, Hui-Xiong Deng(邓惠雄)1, Jian-Bai Xia(夏建白)1,4, Zhongming Wei(魏钟鸣)1,4 |
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100083, China; 2 School of Materials and Energy, Guangdong University of Technology, Guangdong 510006, China; 3 Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300072, China; 4 Beijing Academy of Quantum Information Sciences, Beijing 100193, China |
|
|
Abstract Two-dimensional (2D) magnetic crystals have attracted great attention due to their emerging new physical phenomena. They provide ideal platforms to study the fundamental physics of magnetism in low dimensions. In this research, magnetic tunneling junctions (MTJs) based on XSe2 (X=Mn, V) with room-temperature ferromagnetism were studied using first-principles calculations. A large tunneling magnetoresistance (TMR) of 725.07% was obtained in the MTJs based on monolayer MnSe2. Several schemes were proposed to improve the TMR of these devices. Moreover, the results of our non-equilibrium transport calculations showed that the large TMR was maintained in these devices under a finite bias. The transmission spectrum was analyzed according to the orbital components and the electronic structure of the monolayer XSe2 (X=Mn, V). The results in this paper demonstrated that the MTJs based on a 2D ferromagnet with room-temperature ferromagnetism exhibited reliable performance. Therefore, such devices show the possibility for potential applications in spintronics.
|
Received: 13 August 2019
Revised: 25 August 2019
Accepted manuscript online:
|
PACS:
|
75.70.Cn
|
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
|
|
75.70.Ak
|
(Magnetic properties of monolayers and thin films)
|
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61571415 and 61622406), the National Key Research and Development Program of China (Grant No. 2017YFA0207500), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000), and Beijing Academy of Quantum Information Sciences, China (Grant No. Y18G04). |
Corresponding Authors:
Hongyu Wen, Zhongming Wei
E-mail: wenhongyu@semi.ac.cn;zmwei@semi.ac.cn
|
Cite this article:
Longfei Pan(潘龙飞), Hongyu Wen(文宏玉), Le Huang(黄乐), Long Chen(陈龙), Hui-Xiong Deng(邓惠雄), Jian-Bai Xia(夏建白), Zhongming Wei(魏钟鸣) Two-dimensional XSe2 (X=Mn, V) based magnetic tunneling junctions with high Curie temperature 2019 Chin. Phys. B 28 107504
|
[36] |
Zhang Y K and Yang W T 1998 Phys. Rev. Lett. 80 890
|
[1] |
Zhang L K, Fang B, Cai J L and Zeng Z M 2018 Appl. Phys. Lett. 112 242408
|
[37] |
Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
|
[2] |
Wilt J, Goul R, Acharya J, Sakidja R and Wu J Z 2018 AIP Adv. 8 125218
|
[38] |
Butler W H, Zhang X G, Schulthess T C and MacLaren J M 2001 Phys. Rev. B 63 054416
|
[3] |
Sun M F, Wang X C and Mi W B 2018 J. Phys. Chem. C. 122 3115
|
[39] |
Kan M, Adhikari S and Sun Q 2014 Phys. Chem. Chem. Phys. 16 4990
|
[4] |
Ma X L, Zhang R J, An C H, Wu S, Hu X D and Liu J 2019 Chin. Phys. B 28 037803
|
[40] |
Tiusan C, Greullet F, Hehn M, Montaigne F, Andrieu S and Schuhl A 2007 J. Phys.-Condens. Mat. 19 165201
|
[5] |
Cao G Y, Zhang C, Wu S L, Ma D and Li X F 2018 Chin. Phys. B 27 124202
|
[41] |
Bai Z Q, Shen L, Cai Y Q, Wu Q Y, Zeng M G, Han G C and Feng Y P 2014 New J. Phys. 16 103033
|
[6] |
Hu S Q, Tian R J, Luo X G, Yin R, Cheng Y C, Zhao J L, Wang X M and Gan X T 2018 Chin. Phys. B 27 128502
|
[7] |
Han J Y and Wang J 2019 Chin. Phys. B 28 017103
|
[8] |
Piquemal-Banci M, Galceran R, Martin M B, Godel F, Anane A, Petroff F, Dlubak B and Seneor P 2017 J. Phys. D Appl. Phys. 50 203002
|
[9] |
Sun Y H, Wang R M and Liu K 2017 Appl. Phys. Rev. 4 011301
|
[10] |
Sharma A, Verheijen M A, Wu L F, Karwal S, Vandalon V, Knoops H C M, Sundaram R S, Hofmann J P, Kessels W M M and Bol A A 2018 Nanoscale 10 8615
|
[11] |
Karpan V M, Giovannetti G, Khomyakov P A, Talanana M, Starikov A A, Zwierzycki M, van den Brink J, Brocks G and Kelly P J 2007 Phys. Rev. Lett. 99 176602
|
[12] |
Piquemal-Banci M, Galceran R, Caneva S, Martin M B, Weatherup R S, Kidambi P R, Bouzehouane K, Xavier S, Anane A, Petroff F, Fert A, Robertson J, Hofmann S, Dlubak B and Seneor P 2016 Appl. Phys. Lett. 108 102404
|
[13] |
Pan L F, Huang L, Zhong M Z, Jiang X W, Deng H X, Li J B, Xia J B and Wei Z M 2018 Nanoscale 10 22196
|
[14] |
Piquemal-Banci M, Galceran R, Godel F, Caneva S, Martin M B, Weatherup R S, Kidambi P R, Bouzehouane K, Xavier S, Anane A, Petroff F, Fert A, Dubois S M M, Charlier J C, Robertson J, Hofmann S, Dlubak B and Seneor P 2018 ACS Nano 12 4712
|
[15] |
Zhou J Q, Qiao J F, Duan C G, Bournel A, Wang K L and Zhao W S 2019 ACS Appl. Mater. Inter. 11 17647
|
[16] |
Iqbal M Z, Iqbal M W, Siddique S, Khan M F and Ramay S M 2016 Sci. Rep. 6 21038
|
[17] |
Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X D 2017 Nature 546 270
|
[18] |
Jiang S W, Shan J and Mak K F 2018 Nat. Mater. 17 406
|
[19] |
Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B V, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W and Xu X D 2018 Science 360 1214
|
[20] |
Li B, Xing T, Zhong M Z, Huang L, Lei N, Zhang J, Li J B and Wei Z M 2017 Nat. Commun. 8 1958
|
[21] |
Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y A, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
|
[22] |
Kuklin A V, Kuzubov A A, Kovaleva E A, Mikhaleva N S, Tomilin F N, Lee H and Avramov P V 2017 Nanoscale 9 621
|
[23] |
Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H and Zhang Y B 2018 Nature 563 94
|
[24] |
Liu S, Yuan X, Zou Y, Sheng Y, Huang C, Zhang E, Ling J, Liu Y, Wang W, Zhang C, Zou J, Wang K and Xiu F 2017 npj 2D Materials and Applications 1 30
|
[25] |
Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D and Morpurgo A F 2018 Nano Lett. 18 4303
|
[26] |
Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol. 13 289
|
[27] |
O'Hara D J, Zhu T C, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W and Kawakami R K 2018 Nano Lett. 18 3125
|
[28] |
O'Hara D J, Zhu T C and Kawakami R K 2018 IEEE Magn. Lett. 9 1405805
|
[29] |
Brandbyge M, Mozos J L, Ordejon P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
|
[30] |
Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
|
[31] |
Cococcioni M and de Gironcoli S 2005 Phys. Rev. B 71 035105
|
[32] |
Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Mat. 21 395502
|
[33] |
Grimme S 2004 J. Comput. Chem. 25 1463
|
[34] |
Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
|
[35] |
Kresse G and Furthmuller J 1996 Comp. Mater. Sci. 6 15
|
[36] |
Zhang Y K and Yang W T 1998 Phys. Rev. Lett. 80 890
|
[37] |
Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
|
[38] |
Butler W H, Zhang X G, Schulthess T C and MacLaren J M 2001 Phys. Rev. B 63 054416
|
[39] |
Kan M, Adhikari S and Sun Q 2014 Phys. Chem. Chem. Phys. 16 4990
|
[40] |
Tiusan C, Greullet F, Hehn M, Montaigne F, Andrieu S and Schuhl A 2007 J. Phys.-Condens. Mat. 19 165201
|
[41] |
Bai Z Q, Shen L, Cai Y Q, Wu Q Y, Zeng M G, Han G C and Feng Y P 2014 New J. Phys. 16 103033
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|