Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 107504    DOI: 10.1088/1674-1056/ab3e45
Special Issue: SPECIAL TOPIC — A celebration of the 100th birthday of Kun Huang
SPECIAL TOPIC—A celebration of the 100th birthday of Kun Huang Prev   Next  

Two-dimensional XSe2 (X=Mn, V) based magnetic tunneling junctions with high Curie temperature

Longfei Pan(潘龙飞)1, Hongyu Wen(文宏玉)1, Le Huang(黄乐)2, Long Chen(陈龙)3, Hui-Xiong Deng(邓惠雄)1, Jian-Bai Xia(夏建白)1,4, Zhongming Wei(魏钟鸣)1,4
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100083, China;
2 School of Materials and Energy, Guangdong University of Technology, Guangdong 510006, China;
3 Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300072, China;
4 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract  Two-dimensional (2D) magnetic crystals have attracted great attention due to their emerging new physical phenomena. They provide ideal platforms to study the fundamental physics of magnetism in low dimensions. In this research, magnetic tunneling junctions (MTJs) based on XSe2 (X=Mn, V) with room-temperature ferromagnetism were studied using first-principles calculations. A large tunneling magnetoresistance (TMR) of 725.07% was obtained in the MTJs based on monolayer MnSe2. Several schemes were proposed to improve the TMR of these devices. Moreover, the results of our non-equilibrium transport calculations showed that the large TMR was maintained in these devices under a finite bias. The transmission spectrum was analyzed according to the orbital components and the electronic structure of the monolayer XSe2 (X=Mn, V). The results in this paper demonstrated that the MTJs based on a 2D ferromagnet with room-temperature ferromagnetism exhibited reliable performance. Therefore, such devices show the possibility for potential applications in spintronics.
Keywords:  two-dimensional material      magnetic tunneling junctions      tunneling magnetoresistance      ferromagnetism  
Received:  13 August 2019      Revised:  25 August 2019      Accepted manuscript online: 
PACS:  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  75.70.Ak (Magnetic properties of monolayers and thin films)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61571415 and 61622406), the National Key Research and Development Program of China (Grant No. 2017YFA0207500), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000), and Beijing Academy of Quantum Information Sciences, China (Grant No. Y18G04).
Corresponding Authors:  Hongyu Wen, Zhongming Wei     E-mail:  wenhongyu@semi.ac.cn;zmwei@semi.ac.cn

Cite this article: 

Longfei Pan(潘龙飞), Hongyu Wen(文宏玉), Le Huang(黄乐), Long Chen(陈龙), Hui-Xiong Deng(邓惠雄), Jian-Bai Xia(夏建白), Zhongming Wei(魏钟鸣) Two-dimensional XSe2 (X=Mn, V) based magnetic tunneling junctions with high Curie temperature 2019 Chin. Phys. B 28 107504

[36] Zhang Y K and Yang W T 1998 Phys. Rev. Lett. 80 890
[1] Zhang L K, Fang B, Cai J L and Zeng Z M 2018 Appl. Phys. Lett. 112 242408
[37] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[2] Wilt J, Goul R, Acharya J, Sakidja R and Wu J Z 2018 AIP Adv. 8 125218
[38] Butler W H, Zhang X G, Schulthess T C and MacLaren J M 2001 Phys. Rev. B 63 054416
[3] Sun M F, Wang X C and Mi W B 2018 J. Phys. Chem. C. 122 3115
[39] Kan M, Adhikari S and Sun Q 2014 Phys. Chem. Chem. Phys. 16 4990
[4] Ma X L, Zhang R J, An C H, Wu S, Hu X D and Liu J 2019 Chin. Phys. B 28 037803
[40] Tiusan C, Greullet F, Hehn M, Montaigne F, Andrieu S and Schuhl A 2007 J. Phys.-Condens. Mat. 19 165201
[5] Cao G Y, Zhang C, Wu S L, Ma D and Li X F 2018 Chin. Phys. B 27 124202
[41] Bai Z Q, Shen L, Cai Y Q, Wu Q Y, Zeng M G, Han G C and Feng Y P 2014 New J. Phys. 16 103033
[6] Hu S Q, Tian R J, Luo X G, Yin R, Cheng Y C, Zhao J L, Wang X M and Gan X T 2018 Chin. Phys. B 27 128502
[7] Han J Y and Wang J 2019 Chin. Phys. B 28 017103
[8] Piquemal-Banci M, Galceran R, Martin M B, Godel F, Anane A, Petroff F, Dlubak B and Seneor P 2017 J. Phys. D Appl. Phys. 50 203002
[9] Sun Y H, Wang R M and Liu K 2017 Appl. Phys. Rev. 4 011301
[10] Sharma A, Verheijen M A, Wu L F, Karwal S, Vandalon V, Knoops H C M, Sundaram R S, Hofmann J P, Kessels W M M and Bol A A 2018 Nanoscale 10 8615
[11] Karpan V M, Giovannetti G, Khomyakov P A, Talanana M, Starikov A A, Zwierzycki M, van den Brink J, Brocks G and Kelly P J 2007 Phys. Rev. Lett. 99 176602
[12] Piquemal-Banci M, Galceran R, Caneva S, Martin M B, Weatherup R S, Kidambi P R, Bouzehouane K, Xavier S, Anane A, Petroff F, Fert A, Robertson J, Hofmann S, Dlubak B and Seneor P 2016 Appl. Phys. Lett. 108 102404
[13] Pan L F, Huang L, Zhong M Z, Jiang X W, Deng H X, Li J B, Xia J B and Wei Z M 2018 Nanoscale 10 22196
[14] Piquemal-Banci M, Galceran R, Godel F, Caneva S, Martin M B, Weatherup R S, Kidambi P R, Bouzehouane K, Xavier S, Anane A, Petroff F, Fert A, Dubois S M M, Charlier J C, Robertson J, Hofmann S, Dlubak B and Seneor P 2018 ACS Nano 12 4712
[15] Zhou J Q, Qiao J F, Duan C G, Bournel A, Wang K L and Zhao W S 2019 ACS Appl. Mater. Inter. 11 17647
[16] Iqbal M Z, Iqbal M W, Siddique S, Khan M F and Ramay S M 2016 Sci. Rep. 6 21038
[17] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X D 2017 Nature 546 270
[18] Jiang S W, Shan J and Mak K F 2018 Nat. Mater. 17 406
[19] Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B V, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W and Xu X D 2018 Science 360 1214
[20] Li B, Xing T, Zhong M Z, Huang L, Lei N, Zhang J, Li J B and Wei Z M 2017 Nat. Commun. 8 1958
[21] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y A, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[22] Kuklin A V, Kuzubov A A, Kovaleva E A, Mikhaleva N S, Tomilin F N, Lee H and Avramov P V 2017 Nanoscale 9 621
[23] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H and Zhang Y B 2018 Nature 563 94
[24] Liu S, Yuan X, Zou Y, Sheng Y, Huang C, Zhang E, Ling J, Liu Y, Wang W, Zhang C, Zou J, Wang K and Xiu F 2017 npj 2D Materials and Applications 1 30
[25] Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D and Morpurgo A F 2018 Nano Lett. 18 4303
[26] Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol. 13 289
[27] O'Hara D J, Zhu T C, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W and Kawakami R K 2018 Nano Lett. 18 3125
[28] O'Hara D J, Zhu T C and Kawakami R K 2018 IEEE Magn. Lett. 9 1405805
[29] Brandbyge M, Mozos J L, Ordejon P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[30] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[31] Cococcioni M and de Gironcoli S 2005 Phys. Rev. B 71 035105
[32] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Mat. 21 395502
[33] Grimme S 2004 J. Comput. Chem. 25 1463
[34] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[35] Kresse G and Furthmuller J 1996 Comp. Mater. Sci. 6 15
[36] Zhang Y K and Yang W T 1998 Phys. Rev. Lett. 80 890
[37] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[38] Butler W H, Zhang X G, Schulthess T C and MacLaren J M 2001 Phys. Rev. B 63 054416
[39] Kan M, Adhikari S and Sun Q 2014 Phys. Chem. Chem. Phys. 16 4990
[40] Tiusan C, Greullet F, Hehn M, Montaigne F, Andrieu S and Schuhl A 2007 J. Phys.-Condens. Mat. 19 165201
[41] Bai Z Q, Shen L, Cai Y Q, Wu Q Y, Zeng M G, Han G C and Feng Y P 2014 New J. Phys. 16 103033
[1] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[5] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[6] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[9] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[10] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[11] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[12] Epitaxy of III-nitrides on two-dimensional materials and its applications
Yu Xu(徐俞), Jianfeng Wang(王建峰), Bing Cao(曹冰), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(11): 117702.
[13] Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate
Guangyi Chen(陈光毅), Yu Zhang(张玉), Shaomian Qi(齐少勉), and Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2021, 30(9): 097504.
[14] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[15] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
No Suggested Reading articles found!