Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(10): 4591-4597    DOI: 10.1088/1674-1056/18/10/081
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Surface diffusion of Si, Ge and C adatoms on Si (001) substrate studied by the molecular dynamics simulation

Chen Zhi-Hui(陈智辉), Yu Zhong-Yuan(俞重远), Lu Peng-Fei(芦鹏飞), and Liu Yu-Min(刘玉敏)
Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing 100876, China Institute of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  Depositions of Si, Ge and C atoms onto a preliminary Si (001) substrate at different temperatures are investigated by using the molecular dynamics method. The mechanism of atomic self-assembling occurring locally on the flat terraces between steps is suggested. Diffusion and arrangement patterns of adatoms at different temperatures are observed. At 900 K, the deposited atoms are more likely to form dimers in the perpendicular [110] direction due to the more favourable movement along the perpendicular [110] direction. C adatoms are more likely to break or reconstruct the dimers on the substrate surface and have larger diffusion distances than Ge and Si adatoms. Exchange between C adatoms and substrate atoms are obvious and the epitaxial thickness is small. Total potential energies of adatoms and substrate atoms involved in the simulation cell are computed. When a newly arrived adatom reaches the stable position, the potential energy of the system will decrease and the curves turns into a ladder-like shape. It is found that C adatoms can lead to more reduction of the system energy and the potential energy of the system will increase as temperature increases.
Keywords:  molecular dynamics simulations      Tersoff potential      surface diffusion      potential energy  
Received:  27 October 2008      Revised:  08 April 2009      Accepted manuscript online: 
PACS:  68.35.Fx (Diffusion; interface formation)  
  67.25.bh (Films and restricted geometries)  
  68.43.Jk (Diffusion of adsorbates, kinetics of coarsening and aggregation)  
  68.55.-a (Thin film structure and morphology)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No 2009AA03Z405) and the National Natural Science Foundation of China (Grant No 60644004).

Cite this article: 

Chen Zhi-Hui(陈智辉), Yu Zhong-Yuan(俞重远), Lu Peng-Fei(芦鹏飞), and Liu Yu-Min(刘玉敏) Surface diffusion of Si, Ge and C adatoms on Si (001) substrate studied by the molecular dynamics simulation 2009 Chin. Phys. B 18 4591

[1] Theoretical study on the transition properties of AlF
Yun-Guang Zhang(张云光), Ling-Ling Ji(吉玲玲), Ru Cai(蔡茹),Cong-Ying Zhang(张聪颖), and Jian-Gang Xu(徐建刚). Chin. Phys. B, 2022, 31(5): 053101.
[2] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[3] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[4] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[5] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[6] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
[7] Accurate Deep Potential model for the Al-Cu-Mg alloy in the full concentration space
Wanrun Jiang(姜万润), Yuzhi Zhang(张与之), Linfeng Zhang(张林峰), and Han Wang(王涵). Chin. Phys. B, 2021, 30(5): 050706.
[8] Configuration interaction study on low-lying states of AlCl molecule
Xiao-Ying Ren(任笑影), Zhi-Yu Xiao(肖志宇), Yong Liu(刘勇), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(5): 053101.
[9] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[10] Understanding defect production in an hcp Zr crystal upon irradiation: An energy landscape perspective
Jiting Tian(田继挺). Chin. Phys. B, 2021, 30(2): 026102.
[11] Identification of key residues in protein functional movements by using molecular dynamics simulations combined with a perturbation-response scanning method
Jun-Bao Ma(马君宝), Wei-Bu Wang(王韦卜), and Ji-Guo Su(苏计国). Chin. Phys. B, 2021, 30(10): 108701.
[12] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[13] Constraint dependence of average potential energy of a passive particle in an active bath
Simin Ye(叶思敏), Peng Liu(刘鹏), Zixuan Wei(魏子轩), Fangfu Ye(叶方富), Mingcheng Yang(杨明成), Ke Chen(陈科). Chin. Phys. B, 2020, 29(5): 058201.
[14] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[15] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
No Suggested Reading articles found!