Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 073401    DOI: 10.1088/1674-1056/ab90f5
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Surface for methane combustion: O(3P)+CH4→OH+CH3

Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师)
School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  Kinetic investigations including quasi-classical trajectory and canonical unified statistical theory method calculations are carried out on a potential energy surface for the hydrogen-abstraction reaction from methane by atom O(3P). The surface is constructed using a modified Shepard interpolation method. The ab initio calculations are performed at the CCSD(T) level. Taking account of the contribution of inner core electrons to electronic correlation interaction in ab initio electronic structure calculations, modified optimized aug-cc-pCVQZ basis sets are applied to the all-electrons calculations. On this potential energy surface, the triplet oxygen atom attacks methane in a near-collinear H-CH3 direction to form a saddle point with barrier height of 13.55 kcal/mol, which plays a key role in the kinetics of the title reaction. For the temperature range of 298-2500 K, our calculated thermal rate constants for the O(3P)+CH4→ OH+CH3 reaction show good agreement with relevant experimental data. This work provides detailed mechanism of this gas-phase reaction and a theoretical guidance for methane combustion.
Keywords:  methane combustion      potential energy surface      transition state      kinetic      ab initio electronic structure calculation  
Received:  29 February 2020      Revised:  28 April 2020      Accepted manuscript online: 
PACS:  34.10.+x (General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))  
  31.15.xv (Molecular dynamics and other numerical methods)  
  34.50.Lf (Chemical reactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51574016) and completed while the author was in residence at UNSW, Australia supported by the International Cooperation Training Program for Innovative Talents of USTB.
Corresponding Authors:  Ya Peng, Zhong-An Jiang     E-mail:  pengyaustb@sina.com;jza1963@263.net

Cite this article: 

Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师) Surface for methane combustion: O(3P)+CH4→OH+CH3 2020 Chin. Phys. B 29 073401

[1] Zhang J H and Liu K P 2011 Chem. Asian J. 6 3132
[2] Jing F Q, Cao J W, Liu X J, Hu Y F, Ma H T and Bian W S 2016 Chin. J. Chem. Phys. 29 430
[3] Fu B N, Shan X, Zhang D H and Clary D C 2017 Chem. Soc. Rev. 46 7625
[4] Peng Y, Jiang Z A and Chen J S 2017 J. Phys. Chem. A 121 2209
[5] Peng Y, Jiang Z A and Chen J S 2018 Chin. Phys. B 27 023401
[6] Jiang Z A, Peng Y, Chen J S, Lan G and Lin H Y 2018 Chin. Phys. B 27 063401
[7] Ault B S 2019 J. Mol. Struct. 1176 47
[8] Guan Y F and Yarkony D R 2020 J. Phys. Chem. Lett. 11 1848
[9] Liu R, Song H W and Yang M H 2019 Chinese J Chem. Phys. 32 46
[10] Troya D 2019 J. Phys. Chem. A 123 6911
[11] Walch S P and Dunning Jr T H 1980 J. Chem. Phys. 72 3221
[12] Baulch D L, Cobos C, Cox R A et al. 1992 J. Phys. Chem. Ref. Data 21 411
[13] Suzuki T and Hirota E 1993 J. Chem. Phys. 98 2387
[14] Wang M L, Li Y M and Zhang J Z 2001 J. Phys. Chem. A 105 2530
[15] Ausfelder F, Kelso H and McKendrick K G 2002 Phys. Chem. Chem. Phys 4 473
[16] Troya D, Schatz G C, Garton D J, Brunsvold A L and Minton T K 2004 J. Chem. Phys. 120 731
[17] Troya D and Garcia-Molina E 2005 J. Phys. Chem. A 109 3015
[18] Zhang J M, Lahankar S A, Garton D J, Minton T K, Zhang W Q and Yang X M 2011 J. Phys. Chem. A 115 10894
[19] Baulch D L, Bowman C T, Cobos C J et al. 2005 J. Phys. Chem. Ref. Data 34 757
[20] González C, McDouall J J W and Schlegel H B 1990 J. Phys. Chem. 94 7467
[21] González M, Hernando J, Millán J and Sayós R 1999 J. Chem. Phys. 110 7326
[22] Roberto-Neto O, Machado F B C and Truhlar D G 1999 J. Chem. Phys. 111 10046
[23] Shao K J, Fu B N and Zhang D H 2015 Chin. J. Chem. Phys. 28 403
[24] Corchado J C, Espinosa-Garcia J, Roberto-Neto O, Chuang Y Y and Truhlar D G 1998 J. Phys. Chem. A 102 4899
[25] Czakó G and Bowman J M 2012 Proc. Natl. Acad. Sci. USA 109 7997
[26] Li Y L, Suleimanov Y V, Green W H and Guo H 2014 J. Phys. Chem. A 118 1989
[27] Cederbaum L S, Domcke W and Köppel H 1978 Chem. Phys. 33 319
[28] Domcke W, Mishra S and Poluyanov L V 2006 Chem. Phys. 322 405
[29] Opalka D, Segado M, Poluyanov L V and Domcke W 2010 Phys. Rev. A 81 042501
[30] Czakó G 2014 J. Chem. Phys. 140 231102
[31] Zhao H L, Wang W J and Zhao Y 2016 J. Phys. Chem. A 120 7589
[32] Bowman J M, Czakó G and Fu B N 2011 Phys. Chem. Chem. Phys. 13 8094
[33] González-Lavado E, Corchado J C and Espinosa-Garcia J 2014 J. Chem. Phys. 140 064310
[34] Joseph T, Steckler R and Truhlar D G 1987 J. Chem. Phys. 87 7036
[35] Jordan M J T and Gilbert R G 1995 J. Chem. Phys. 102 5669
[36] Espinosa-Garcia J and Garcia-Bernaldez J C 2000 Phys. Chem. Chem. Phys. 2 2345
[37] Espinosa-Garcia J 2014 J. Phys. Chem. A 118 3572
[38] González-Lavado E, Rangel C and Espinosa-Garcia J 2014 Phys. Chem. Chem. Phys. 16 8428
[39] Monge-Palacios M, González-Lavado E and Espinosa-Garcia J 2014 J. Chem. Phys. 141 094307
[40] Jasper A W, Sivaramakrishnan R and Klippenstein S J 2019 J. Chem. Phys. 150 114112
[41] Suleimanov Y V, Aoiz F J and Guo H 2016 J. Phys. Chem. A 120 8488
[42] Thompson K C, Jordan M J T and Collins M A 1998 J. Chem. Phys. 108 8302
[43] Morris M and Jordan M J T 2014 J. Chem. Phys. 140 204107
[44] Cao J W, Zhang Z J, Zhang C F, Liu K, Wang M H and Bian W S 2009 Proc. Natl. Acad. Sci. USA 106 13180
[45] Zhang W Q, Zhou Y, Wu G R et al. 2010 Proc. Natl. Acad. Sci. USA 107 12782
[46] Zhou Y, Fu B N, Wang C R, Collins M A and Zhang D H 2011 J. Chem. Phys. 134 064323
[47] Cao J W, Zhang Z J, Zhang C F, Bian W S and Guo Y 2011 J. Chem. Phys. 134 024315
[48] Frankcombe T J and Collins M A 2011 Phys. Chem. Chem. Phys. 13 8379
[49] Frisch M J, Trucks G W, Schlegel H B et al. 2010 Gaussian 09, Wallingford CT
[50] Zheng J J, Zhao Y and Truhlar D G 2009 J. Chem. Theory Comput. 5 808
[51] Gomez-Carrasco S, Roncero O, Gonzalez-Sanchez L, Hernandez M L, Alvarino J M, Paniagua M and Aguado A 2005 J. Chem. Phys. 123 114310
[52] Raghavachari K, Trucks G W, Pople J A and Head-Gordon M 1989 Chem. Phys. Lett. 157 479
[53] Bettens R P A and Collins M A 1999 J. Chem. Phys. 111 816
[54] Collins M A 2002 Theor. Chem. Acc. 108 313
[55] Jordan M, Thompson K, Bettens R et al. GROW, version 2.2, a collection of scripts and programs that allow the user to construct molecular potential energy surfaces for either unimolecular/bimolecular reactions or bound-state systems
[56] Cao J W, Li F Y, Xia W S and Bian W S 2019 Chinese J. Chem. Phys. 32 157
[57] Wang F Y and Liu K P 2010 Chem. Sci. 1 126
[58] Zheng J, Zhang S, Lynch B J et al. POLYRATE, version 2015, a computer program for the calculation of chemical reaction rates for polyatomics, see https://comp.chem.umn.edu/polyrate/
[59] González-Lavado E, Corchado J C, Suleimanov Y V, Green W H and Espinosa-Garcia J 2014 J. Phys. Chem. A 118 3243
[60] Cohen N 1986 Int. J. Chem. Kinet. 18 59
[61] Gordon M S and Truhlar D G 1986 J. Am. Chem. Soc. 108 5412
[1] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[2] Effect of kinetic ions on the toroidal double-tearing modes
Ruibo Zhang(张睿博), Lei Ye(叶磊), Yang Chen, Nong Xiang(项农), and Xiaoqing Yang(杨小庆). Chin. Phys. B, 2023, 32(2): 025203.
[3] Kinetic Alfvén waves in a deuterium-tritium fusion plasma with slowing-down distributed α-particles
Fei-Fei Lu(路飞飞) and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(3): 035201.
[4] Transition state and formation process of Stone—Wales defects in graphene
Jian-Hui Bai(白建会), Yin Yao(姚茵), and Ying-Zhao Jiang(姜英昭). Chin. Phys. B, 2022, 31(3): 036102.
[5] Cluster dynamics modeling of niobium and titanium carbide precipitates in α-Fe and γ-Fe
Nadezda Korepanova, Long Gu(顾龙), Mihai Dima, and Hushan Xu(徐瑚珊). Chin. Phys. B, 2022, 31(2): 026103.
[6] Understanding the battery safety improvement enabled by a quasi-solid-state battery design
Luyu Gan(甘露雨), Rusong Chen(陈汝颂), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(11): 118202.
[7] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[8] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
[9] Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow
Jun-Jie Su(苏俊杰), Jun Wang(王军), and Guo-Dong Xia(夏国栋). Chin. Phys. B, 2021, 30(7): 075101.
[10] Equilibrium folding and unfolding dynamics to reveal detailed free energy landscape of src SH3 protein by magnetic tweezers
Huanhuan Su(苏环环), Hao Sun(孙皓), Haiyan Hong(洪海燕), Zilong Guo(郭子龙), Ping Yu(余平), and Hu Chen(陈虎). Chin. Phys. B, 2021, 30(7): 078201.
[11] Accurate Deep Potential model for the Al-Cu-Mg alloy in the full concentration space
Wanrun Jiang(姜万润), Yuzhi Zhang(张与之), Linfeng Zhang(张林峰), and Han Wang(王涵). Chin. Phys. B, 2021, 30(5): 050706.
[12] Geometric structure of N2Oq+ (q = 5, 6) studied by Ne8+ ion-induced Coulomb explosion imaging
Xi Zhao(赵曦), Xu Shan(单旭), Xiaolong Zhu(朱小龙), Lei Chen(陈磊), Zhenjie Shen(沈镇捷), Wentian Feng(冯文天), Dalong Guo(郭大龙), Dongmei Zhao(赵冬梅), Ruitian Zhang(张瑞田), Yong Gao(高永), Zhongkui Huang(黄忠魁), Shaofeng Zhang(张少锋), Xinwen Ma(马新文), and Xiangjun Chen(陈向军). Chin. Phys. B, 2021, 30(11): 113302.
[13] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim. Chin. Phys. B, 2021, 30(1): 017201.
[14] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[15] Inverse Ising techniques to infer underlying mechanisms from data
Hong-Li Zeng(曾红丽), Erik Aurell. Chin. Phys. B, 2020, 29(8): 080201.
No Suggested Reading articles found!