Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 108701    DOI: 10.1088/1674-1056/abf12f

Identification of key residues in protein functional movements by using molecular dynamics simulations combined with a perturbation-response scanning method

Jun-Bao Ma(马君宝), Wei-Bu Wang(王韦卜), and Ji-Guo Su(苏计国)
Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  The realization of protein functional movement is usually accompanied by specific conformational changes, and there exist some key residues that mediate and control the functional motions of proteins in the allosteric process. In the present work, the perturbation-response scanning method developed by our group was combined with the molecular dynamics (MD) simulation to identify the key residues controlling the functional movement of proteins. In our method, a physical quantity that is directly related to protein specific function was introduced, and then based on the MD simulation trajectories, the perturbation-response scanning method was used to identify the key residues for functional motions, in which the residues that highly correlated with the fluctuation of the function-related quantity were identified as the key residues controlling the specific functional motions of the protein. Two protein systems, i.e., the heat shock protein 70 and glutamine binding protein, were selected as case studies to validate the effectiveness of our method. Our calculated results are in good agreement with the experimental results. The location of the key residues in the two proteins are similar, indicating the similar mechanisms behind the performance of their biological functions.
Keywords:  protein functional movements      molecular dynamics simulations      perturbation-response scanning method  
Received:  06 January 2021      Revised:  25 February 2021      Accepted manuscript online:  24 March 2021
PACS: (Analytical theories)  
  87.14.E- (Proteins)  
  87.15.hp (Conformational changes)  
Corresponding Authors:  Ji-Guo Su     E-mail:

Cite this article: 

Jun-Bao Ma(马君宝), Wei-Bu Wang(王韦卜), and Ji-Guo Su(苏计国) Identification of key residues in protein functional movements by using molecular dynamics simulations combined with a perturbation-response scanning method 2021 Chin. Phys. B 30 108701

[1] Su J G, Xu X J, Li C H, Chen W Z and Wang C X 2011 J. Chem. Phys. 135 174101
[2] Monod J, Changeux J P and Jacob F 1963 J. Mol. Biol. 6 306
[3] Perkins J R, Diboun I, Dessailly B H and Lees J G and Orengo C 2010 Structure. 18 1233
[4] Tsai C J, Del Sol A and Nussinov R 2009 Mol. Biosyst. 5 207
[5] Wei X and Wang Y 2021 Chin. Phys. B 30 028703
[6] Teilum K, Olsen J G and Kragelund B B 2009 Cell. Mol. Life Sci. 66 2231
[7] Doshi U, Holliday M J, Eisenmesser E Z and Hamelberg D 2016 Proc. Natl. Acad. Sci. USA 113 4735
[8] Zhou H, Dong Z and Tao P 2018 J. Comput. Chem. 39 1481
[9] Ota N and Agard D A 2005 J. Mol. Biol. 351 345
[10] Sharp K and Skinner J J 2006 Proteins 65 347
[11] Kong Y and Karplus M 2009 Proteins 74 145
[12] Fornili A, Giabbai B, Garau G and Degano M 2010 J. Am. Chem. Soc. 132 17570
[13] Chan C, Wen H, Lu L and Fan J 2015 Chin. Phys. B 25 018707
[14] Shao D and Gao K 2018 Chin. Phys. B 27 018701
[15] Zhang C and Zhou X 2020 Chin. Phys. B 29 108706
[16] Zhang X, Guo Z, Yu P, Li Q, Zhou X and Chen H 2020 Chin. Phys. B 29 078701
[17] McCammon J A 1984 Rep. Prog. Phys. 47 1
[18] Kamberaj H and Van der Vaart A 2009 Biophys. J. 96 1307
[19] Kasahara K, Fukuda I and Nakamura H 2014 PLoS One. 9 e112419
[20] Erman B 2013 Proteins 81 1097
[21] Yang L W, Liu X, Jursa C J, Holliman M, Rader A J, Karimi H A and Bahar I 2005 Bioinformatics 21 2978
[22] Rueda M, Bottegoni G and Abagyan R 2009 J. Chem Inf. Model. 49 716
[23] Tama F, Miyashita O and Brooks Ⅲ C L 2004 J. Mol. Biol. 337 985
[24] Bernardi R C, Melo M C R and Schulten K 2015 Biochim Biophys Acta Gen Subj. 1850 872
[25] Atilgan C, Gerek Z N, Ozkan S B and Atilgan A R 2010 Biophys. J. 99 933
[26] Zheng W, Brooks B R, Doniach S and Thirumalai D 2005 Structure 13 565
[27] Zheng W, Liao J C, Brooks B R and Doniach S 2007 Proteins 67 886
[28] Zheng W and Tekpinar M 2009 BMC Struct. Biol. 9 45
[29] Ming D and Wall M E 2005 Phys. Rev. Lett. 95 198103
[30] Ming D and Wall M E 2005 Proteins 59 697
[31] Su J G, Du H J, Hao R, Xu X J, Li C H, Chen W Z and Wang C X 2013 J. Phys. Chem. B. 117 8689
[32] Su J G, Zhang X, Zhao S X, Li X Y, Hou Y X, Wu Y D, Zhu J Z and An H L 2015 Int. J. Mol. Sci. 16 17933
[33] Su J G, Han X M, Zhang X, Hou Y X, Zhu J Z and Wu Y D 2016 J. Biomol. Struct. Dyn. 34 560
[34] Zhang P F and Su J G 2019 J. Chem. Phys. 151 045101
[35] Tirion M M 1996 Phys. Rev. Lett. 77 1905
[36] Bahar I, Atilgan A R, Demirel M C and Erman B 1998 Phys. Rev. Lett. 80 2733
[37] Lezon T R and Bahar I 2010 PLoS Comput Biol 6 e1000816
[38] Tang Q Y, Zhang Y Y, Wang J, Wang W and Chialvo D R 2017 Phys. Rev. Lett. 118 088102
[39] Bettati S and Mozzarelli A 1997 J. Biol. Chem. 272 32050
[40] Mayer M P and Bukau B 2005 Cell. Mol. Life Sci. 62 670
[41] Rosenzweig R, Nillegoda N B, Mayer M P and Bukau B 2019 Nat. Rev. Mol. Cell Biol. 20 665
[42] Boorstein W R, Ziegelhoffer T and Craig E A 1994 eJ. Mol. Evol. 38 1
[43] Bukau B and Horwich A L 1998 Cell. 92 351
[44] Bhattacharya A, Kurochkin A V, Yip G N, Zhang Y, Bertelsen E B and Zuiderweg E R 2009 J. Mol. Biol. 388 475
[45] Kampinga H H and Craig E A 2010 Nat. Rev. Mol. Cell Biol. 11 579
[46] Woo H J, Jiang J, Lafer E M and Sousa R 2009 Biochemistry. 48 11470
[47] Ung P M U, Thompson A D, Chang L, Gestwicki J E and Carlson H A 2013 PLoS Comput. Biol. 9 e1003279
[48] Mayer M P and Bukau B 2005 Cell. Mol. Life Sci. 62 670
[49] Stetz G and Verkhivker G M 2017 PLoS Comput. Biol. 13 e1005299
[50] Kumar D P, Vorvis C, Sarbeng E B, Ledesma V C C, Willis J E and Liu Q 2011 J. Mol. Biol. 411 1099
[51] Feng Y, Zhang L, Wu S, Liu Z, Gao X, Zhang X, Liu M, Liu J, Huang X and Wang, W 2016 Angew. Chem. Int. Edit. 55 13990
[52] Su J G, Jiao X, Sun T G, Li C H, Chen W Z and Wang C X 2007 Biophys. J. 92 1326
[53] Pang A, Arinaminpathy Y, Sansom M S and Biggin P C 2003 FEBS Lett. 550 168
[54] Sun Y J, Rose J, Wang B C and Hsiao C D 1998 J. Mol. Biol. 278 219
[55] Loeffler H H and Kitao A 2009 Biophys. J. 97 2541
[56] Hayward S and Kitao A 2015 J. Chem. Theory Comput. 11 3895
[57] Lv D, Wang C, Li C, Tan J and Zhang X 2017 Comput. Biol. Chem. 67 62
[1] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[2] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[3] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[4] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[5] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[6] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[7] Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures
Haifei Zhan(占海飞), Yuantong Gu(顾元通). Chin. Phys. B, 2018, 27(3): 038103.
[8] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
Run-Feng Xu(徐润峰), Kui Han(韩奎), Hai-Peng Li(李海鹏). Chin. Phys. B, 2018, 27(2): 026801.
[9] Numerical simulations of dense granular flow in a two-dimensional channel:The role of exit position
Tingwei Wang(王廷伟), Xin Li(李鑫), Qianqian Wu(武倩倩), Tengfei Jiao(矫滕菲), Xingyi Liu(刘行易), Min Sun(孙敏), Fenglan Hu(胡凤兰), Decai Huang(黄德财). Chin. Phys. B, 2018, 27(12): 124704.
[10] Ethylene glycol solution-induced DNA conformational transitions
Nan Zhang(张楠), Ming-Ru Li(李明儒), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(11): 113102.
[11] Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media
Ping Guo(郭平), Yi-Kun Pan(潘意坤), Long-Long Li(李龙龙), Bin Tang(唐斌). Chin. Phys. B, 2017, 26(7): 073101.
[12] Diffusion and thermite reaction process of film-honeycomb Al/NiO nanothermite: Molecular dynamics simulations using ReaxFF reactive force field
Hua-Dong Zeng(曾华东), Zhi-Yang Zhu(祝志阳), Ji-Dong Zhang(张吉东), Xin-Lu Cheng(程新路). Chin. Phys. B, 2017, 26(5): 056101.
[13] Molecular dynamics simulations of the effects of sodium dodecyl sulfate on lipid bilayer
Bin Xu(徐斌), Wen-Qiang Lin(林文强), Xiao-Gang Wang(汪小刚), Song-wei Zeng(曾松伟), Guo-Quan Zhou(周国泉), Jun-Lang Chen(陈均朗). Chin. Phys. B, 2017, 26(3): 033103.
[14] Nano watermill driven by revolving charge
Zhou Xiao-Yan (周晓艳), Kou Jian-Long (寇建龙), Nie Xue-Chuan (聂雪川), Wu Feng-Min (吴锋民), Liu Yang (刘扬), Lu Hang-Jun (陆杭军). Chin. Phys. B, 2015, 24(7): 074702.
[15] Crystallization of polymer chains induced by graphene:Molecular dynamics study
Yang Jun-Sheng (杨俊升), Huang Duo-Hui (黄多辉), Cao Qi-Long (曹启龙), Li Qiang (李强), Wang Li-Zhi (王立志), Wang Fan-Hou (王藩侯). Chin. Phys. B, 2013, 22(9): 098101.
No Suggested Reading articles found!