Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 038701    DOI: 10.1088/1674-1056/abc540
Special Issue: SPECIAL TOPIC — Modeling and simulations for the structures and functions of proteins and nucleic acids
TOPICAL REVIEW—Modeling and simulations for the structures and functions of proteins and nucleic acids Prev   Next  

Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins

Shouqin Lü(吕守芹)1,2, Qihan Ding(丁奇寒)1,2, Mingkun Zhang(张明焜)1,2,3, and Mian Long(龙勉)1,2,
1 Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences (CAS), Beijing 100190, China; 2 School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, China; 3 Chongqing Engineering Research Center of High-Resolution and 3D Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
Abstract  Molecular dynamics simulation (MDS) is a powerful technology for investigating evolution dynamics of target proteins, and it is used widely in various fields from materials to biology. This mini-review introduced the principles, main preforming procedures, and advances of MDS, as well as its applications on the studies of conformational and allosteric dynamics of proteins especially on that of the mechanosensitive integrins. Future perspectives were also proposed. This review could provide clues in understanding the potentiality of MD simulations in structure-function relationship investigation of biological proteins.
Keywords:  molecular dynamics simulations      mechanosensitive protein      allosteric dynamics      integrin  
Received:  08 August 2020      Revised:  14 October 2020      Accepted manuscript online:  28 October 2020
PACS:  87.10.Tf (Molecular dynamics simulation)  
  87.14.E- (Proteins)  
  87.85.G- (Biomechanics)  
  33.15.Hp (Barrier heights (internal rotation, inversion, rotational isomerism, conformational dynamics))  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0501601), the National Natural Science Foundation of China (Grant Nos. 91642203, 31627804, and 11972042), the Frontier Science Key Project of the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-JSC018), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. GJJSTU20190005), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB22040101).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉) Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins 2021 Chin. Phys. B 30 038701

1 Monod J, Changeux J P and Jacob F 1963 J. Mol. Biol. 6 306
2 Phan U T, Waldron T T and Springer T A 2006 Nat. Immunol. 7 883
3 L\"u S Q, Zhang Y and Long M 2010 PLoS One 5 e15417
4 L\"u S Q, Chen S B, Mao D B, Zhang Y and Long M 2015 PLoS One 10 e0118083
5 L\"u S Q, An H L, Zhang H L and Long M 2016 Mol. Neurobiol. 53 5948
6 Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I and Kurachi Y 2010 Physiol. Rev. 90 291
7 Dokholyan N V 2016 Chem. Rev. 116 6463
8 Martin-Garcia J M, Conrad C E, Coe J, Roy-Chowdhury S and Fromme P 2016 Arch. Biochem. Biophys. 602 32
9 Grutsch S, Bruschweiler S and Tollinger M 2016 PLoS Comput. Biol. 12 e1004620
10 Egelman E H 2016 Biophys. J. 110 1008
11 Sustarsic M and Kapanidis A N 2015 Curr. Opin. Struct. Biol. 34 52
12 Chen W, Lou J, Evans E A and Zhu C 2012 J. Cell Biol. 199 497
13 McCammon J A, Gelin B R and Karplus M 1977 Nature 267 585
14 Guvench O and MacKerell A D Jr 2008 Methods Mol. Biol. 443 63
15 Wang J, Wolf R M, Caldwell J W, Kollman P A and Case D A 2004 J. Comput. Chem. 25 1157
16 MacKerell A D, Bashford D, Bellott M, et al. 1998 J. Phys. Chem. B 102 3586
17 Oostenbrink C, Villa A, Mark A E and van Gunsteren W F 2004 J. Comput. Chem. 25 1656
18 Case D A, Cheatham T E, Darden T, Gohlke H, Luo R, Merz K M Jr, Onufriev A, Simmerling C, Wang B and Woods R J 2005 J. Comput. Chem. 26 1668
19 Brooks B R, Bruccoleri R E, Olafson B D, States D J, Swaminathan S and Karplus M 1983 J. Comput. Chem. 4 187
20 Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J 2005 J. Comput. Chem. 26 1701
21 Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kale L and Schulten K 2005 J. Comput. Chem. 26 1781
22 Zhang. M, L\"u S Q, Li G, Mao Z, Yu X, Sun W, Tang Z, Long M and Su W 2010 J. Biol. Chem. 285 41982
23 Lou J and Zhu C 2007 Biophys. J. 92 1471
24 Wu P, Zhang T, Liu B, et al. 2019 Mol. Cell 73 1015
25 Halgren T A 1996 J. Comput. Chem. 17 616
26 Barbault F and Maurel F 2015 Expert. Opin. Drug Discov. 10 1047
27 Takada S, Kanada R, Tan C, Terakawa T, Li W and Kenzaki H 2015 Acc. Chem. Res. 48 3026
28 Dannenhoffer-Lafage T and Voth G A 2020 J. Chem. Theory Comput. 16 2541
29 Khanjari N, Eslami H and Muller-Plathe F 2017 J. Comput. Chem. 38 2721
30 Isralewitz B, Gao M and Schulten K 2001 Curr. Opin. Struct. Biol. 11 224
31 Schlitter J, Engels M and Kruger P 1994 J. Mol. Graph. 12 84
32 Marszalek P E, Lu H, Li H, Carrion-Vazquez M, Oberhauser A F, Schulten K and Fernandez J M 1999 Nature 402 100
33 Merkel R, Nassoy P, Leung A, Ritchie K and Evans E 1999 Nature 397 50
34 Li J, Lu S, Liu Y, Pang C, Chen Y, Zhang S, Yu H, Long M, Zhang H, Logothetis D E, Zhan Y and An H 2015 Sci. Rep. 5 11289
35 Wang J, Lu D, Mao D and Long M 2014 Protein Cell 5 518
36 Zhu C, Chen W, Lou J, Rittase W and Li K 2019 Nat. Immunol. 20 1269
37 Lorenz L, Axnick J, Buschmann T, Henning C, Urner S, Fang S, Nurmi H, Eichhorst N, Holtmeier R, Bodis K, Hwang J H, Mussig K, Eberhard D, Stypmann J, Kuss O, Roden M, Alitalo K, Haussinger, D and Lammert E 2018 Nature 562 128
38 Wu X, Hu J, Li G, Li Y, Li Y, Zhang J, Wang F, Li A, Hu L, Fan Z, Lu S, Ding G, Zhang C, Wang J, Long M and Wang S 2020 EMBO J. 39 e102374
39 Tajik A, Zhang Y, Wei F, Sun J, Jia Q, Zhou W, Singh R, Khanna N, Belmont A S and Wang N 2016 Nat. Mater. 15 1287
40 Pollard T D and Cooper J A 2009 Science 326 1208
41 Cox C D, Bavi N and Martinac B 2019 Cell Rep. 29 1
42 Sun Z, Guo S S and Fassler R 2016 J. Cell Biol. 215 445
43 Latorraca N R, Venkatakrishnan A J and Dror R O 2017 Chem. Rev. 117 139
44 Hynes R O 2002 Cell 110 673
45 Luo B H, Carman C V and Springer T A 2007 Ann. Rev. Immunol. 25 619
46 Xie C, Zhu J, Chen X, Mi L, Nishida N and Springer T A 2010 EMBO J. 29 666
47 Sen M, Yuki K and Springer T A 2013 J. Cell Biol. 203 629
48 Michael M and Parsons M 2020 Curr. Opin. Cell Biol. 63 31
49 Alonso. J L, Essafi M, Xiong J P, Stehle T and Arnaout M A 2002 Curr. Biol. 12 R340
50 Xiang X, Lee C Y, Li T, Chen W, Lou J and Zhu C 2011 PLoS One 6 e27946
51 Jin M, Andricioaei I and Springer T A 2004 Structure 12 2137
52 Mao D, Lu S, Li N, Zhang Y and Long M 2011 PLoS One 6 e24188
53 Zhang X, Li L, Li N, Shu X, Zhou L, Lu S, Chen S, Mao D and Long M 2018 FEBS J. 285 261
54 Gaillard T, Dejaegere A and Stote R H 2009 Proteins 76 977
55 Provasi D, Murcia M, Coller B S and Filizola M 2009 Proteins 77 477
56 Puklin-Faucher E, Gao M, Schulten K and Vogel V 2006 J. Cell Biol. 175 349
57 Puklin-Faucher E and Vogel V 2009 J. Biol. Chem. 284 36557
58 Jallu V, Poulain P, Fuchs P F, Kaplan C and de Brevern A G 2014 Biochimie 105 84
59 Laguerre M, Sabi E, Daly M, Stockley J, Nurden P, Pillois X and Nurden A T 2013 PLoS One 8 e78683
60 Levin L, Zelzion E, Nachliel E, Gutman M, Tsfadia Y and Einav Y 2013 PLoS One 8 e59175
61 Kalli A C, Hall B A, Campbell I D and Sansom M S 2011 Structure 19 1477
62 Chng C P and Tan S M 2011 Proteins 79 2203
63 Kalli A C, Campbell I D and Sansom M S 2011 Proc. Natl. Acad. Sci. USA 108 11890
64 Kalli A C, Campbell I D and Sansom M S 2013 PLoS Comput. Biol. 9 e1003316
65 Kalli A C, Wegener K L, Goult B T, Anthis N J, Campbell I D and Sansom M S 2010 Structure 18 1280
66 Provasi D, Negri A, Coller B S and Filizola M 2014 Proteins 82 3231
67 Kalli A C, Rog T, Vattulainen I, Campbell I D and Sansom M S P 2017 J. Membr. Biol. 250 337
68 Chen W, Lou J, Hsin J, Schulten K, Harvey S C and Zhu C 2011 PLoS Comput. Biol. 7 e1001086
69 Kulke M and Langel W 2020 Proteins 88 679
70 Mehrbod M, Trisno S and Mofrad M R 2013 Biophys. J. 105 1304
71 Bidone T C, Polley A, Jin J, Driscoll T, Iwamoto D V, Calderwood D A, Schwartz M A and Voth G A 2019 Biophys. J. 116 1000
72 Bidone T C, Skeeters A V, Oakes P W and Voth G A 2019 PLoS Comput. Biol. 15 e1007077
[1] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[2] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[3] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[4] Identification of key residues in protein functional movements by using molecular dynamics simulations combined with a perturbation-response scanning method
Jun-Bao Ma(马君宝), Wei-Bu Wang(王韦卜), and Ji-Guo Su(苏计国). Chin. Phys. B, 2021, 30(10): 108701.
[5] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[6] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[7] Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures
Haifei Zhan(占海飞), Yuantong Gu(顾元通). Chin. Phys. B, 2018, 27(3): 038103.
[8] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
Run-Feng Xu(徐润峰), Kui Han(韩奎), Hai-Peng Li(李海鹏). Chin. Phys. B, 2018, 27(2): 026801.
[9] Numerical simulations of dense granular flow in a two-dimensional channel:The role of exit position
Tingwei Wang(王廷伟), Xin Li(李鑫), Qianqian Wu(武倩倩), Tengfei Jiao(矫滕菲), Xingyi Liu(刘行易), Min Sun(孙敏), Fenglan Hu(胡凤兰), Decai Huang(黄德财). Chin. Phys. B, 2018, 27(12): 124704.
[10] Ethylene glycol solution-induced DNA conformational transitions
Nan Zhang(张楠), Ming-Ru Li(李明儒), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(11): 113102.
[11] Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media
Ping Guo(郭平), Yi-Kun Pan(潘意坤), Long-Long Li(李龙龙), Bin Tang(唐斌). Chin. Phys. B, 2017, 26(7): 073101.
[12] Diffusion and thermite reaction process of film-honeycomb Al/NiO nanothermite: Molecular dynamics simulations using ReaxFF reactive force field
Hua-Dong Zeng(曾华东), Zhi-Yang Zhu(祝志阳), Ji-Dong Zhang(张吉东), Xin-Lu Cheng(程新路). Chin. Phys. B, 2017, 26(5): 056101.
[13] Molecular dynamics simulations of the effects of sodium dodecyl sulfate on lipid bilayer
Bin Xu(徐斌), Wen-Qiang Lin(林文强), Xiao-Gang Wang(汪小刚), Song-wei Zeng(曾松伟), Guo-Quan Zhou(周国泉), Jun-Lang Chen(陈均朗). Chin. Phys. B, 2017, 26(3): 033103.
[14] Nano watermill driven by revolving charge
Zhou Xiao-Yan (周晓艳), Kou Jian-Long (寇建龙), Nie Xue-Chuan (聂雪川), Wu Feng-Min (吴锋民), Liu Yang (刘扬), Lu Hang-Jun (陆杭军). Chin. Phys. B, 2015, 24(7): 074702.
[15] Crystallization of polymer chains induced by graphene:Molecular dynamics study
Yang Jun-Sheng (杨俊升), Huang Duo-Hui (黄多辉), Cao Qi-Long (曹启龙), Li Qiang (李强), Wang Li-Zhi (王立志), Wang Fan-Hou (王藩侯). Chin. Phys. B, 2013, 22(9): 098101.
No Suggested Reading articles found!