Special Issue:
SPECIAL TOPIC — Modeling and simulations for the structures and functions of proteins and nucleic acids
|
TOPICAL REVIEW—Modeling and simulations for the structures and functions of proteins and nucleic acids |
Prev
Next
|
|
|
Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins |
Shouqin Lü(吕守芹)1,2, Qihan Ding(丁奇寒)1,2, Mingkun Zhang(张明焜)1,2,3, and Mian Long(龙勉)1,2,† |
1 Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences (CAS), Beijing 100190, China; 2 School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, China; 3 Chongqing Engineering Research Center of High-Resolution and 3D Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China |
|
|
Abstract Molecular dynamics simulation (MDS) is a powerful technology for investigating evolution dynamics of target proteins, and it is used widely in various fields from materials to biology. This mini-review introduced the principles, main preforming procedures, and advances of MDS, as well as its applications on the studies of conformational and allosteric dynamics of proteins especially on that of the mechanosensitive integrins. Future perspectives were also proposed. This review could provide clues in understanding the potentiality of MD simulations in structure-function relationship investigation of biological proteins.
|
Received: 08 August 2020
Revised: 14 October 2020
Accepted manuscript online: 28 October 2020
|
PACS:
|
87.10.Tf
|
(Molecular dynamics simulation)
|
|
87.14.E-
|
(Proteins)
|
|
87.85.G-
|
(Biomechanics)
|
|
33.15.Hp
|
(Barrier heights (internal rotation, inversion, rotational isomerism, conformational dynamics))
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0501601), the National Natural Science Foundation of China (Grant Nos. 91642203, 31627804, and 11972042), the Frontier Science Key Project of the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-JSC018), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. GJJSTU20190005), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB22040101). |
Corresponding Authors:
†Corresponding author. E-mail: mlong@imech.ac.cn
|
Cite this article:
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉) Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins 2021 Chin. Phys. B 30 038701
|
1 Monod J, Changeux J P and Jacob F 1963 J. Mol. Biol. 6 306 2 Phan U T, Waldron T T and Springer T A 2006 Nat. Immunol. 7 883 3 L\"u S Q, Zhang Y and Long M 2010 PLoS One 5 e15417 4 L\"u S Q, Chen S B, Mao D B, Zhang Y and Long M 2015 PLoS One 10 e0118083 5 L\"u S Q, An H L, Zhang H L and Long M 2016 Mol. Neurobiol. 53 5948 6 Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I and Kurachi Y 2010 Physiol. Rev. 90 291 7 Dokholyan N V 2016 Chem. Rev. 116 6463 8 Martin-Garcia J M, Conrad C E, Coe J, Roy-Chowdhury S and Fromme P 2016 Arch. Biochem. Biophys. 602 32 9 Grutsch S, Bruschweiler S and Tollinger M 2016 PLoS Comput. Biol. 12 e1004620 10 Egelman E H 2016 Biophys. J. 110 1008 11 Sustarsic M and Kapanidis A N 2015 Curr. Opin. Struct. Biol. 34 52 12 Chen W, Lou J, Evans E A and Zhu C 2012 J. Cell Biol. 199 497 13 McCammon J A, Gelin B R and Karplus M 1977 Nature 267 585 14 Guvench O and MacKerell A D Jr 2008 Methods Mol. Biol. 443 63 15 Wang J, Wolf R M, Caldwell J W, Kollman P A and Case D A 2004 J. Comput. Chem. 25 1157 16 MacKerell A D, Bashford D, Bellott M, et al. 1998 J. Phys. Chem. B 102 3586 17 Oostenbrink C, Villa A, Mark A E and van Gunsteren W F 2004 J. Comput. Chem. 25 1656 18 Case D A, Cheatham T E, Darden T, Gohlke H, Luo R, Merz K M Jr, Onufriev A, Simmerling C, Wang B and Woods R J 2005 J. Comput. Chem. 26 1668 19 Brooks B R, Bruccoleri R E, Olafson B D, States D J, Swaminathan S and Karplus M 1983 J. Comput. Chem. 4 187 20 Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J 2005 J. Comput. Chem. 26 1701 21 Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kale L and Schulten K 2005 J. Comput. Chem. 26 1781 22 Zhang. M, L\"u S Q, Li G, Mao Z, Yu X, Sun W, Tang Z, Long M and Su W 2010 J. Biol. Chem. 285 41982 23 Lou J and Zhu C 2007 Biophys. J. 92 1471 24 Wu P, Zhang T, Liu B, et al. 2019 Mol. Cell 73 1015 25 Halgren T A 1996 J. Comput. Chem. 17 616 26 Barbault F and Maurel F 2015 Expert. Opin. Drug Discov. 10 1047 27 Takada S, Kanada R, Tan C, Terakawa T, Li W and Kenzaki H 2015 Acc. Chem. Res. 48 3026 28 Dannenhoffer-Lafage T and Voth G A 2020 J. Chem. Theory Comput. 16 2541 29 Khanjari N, Eslami H and Muller-Plathe F 2017 J. Comput. Chem. 38 2721 30 Isralewitz B, Gao M and Schulten K 2001 Curr. Opin. Struct. Biol. 11 224 31 Schlitter J, Engels M and Kruger P 1994 J. Mol. Graph. 12 84 32 Marszalek P E, Lu H, Li H, Carrion-Vazquez M, Oberhauser A F, Schulten K and Fernandez J M 1999 Nature 402 100 33 Merkel R, Nassoy P, Leung A, Ritchie K and Evans E 1999 Nature 397 50 34 Li J, Lu S, Liu Y, Pang C, Chen Y, Zhang S, Yu H, Long M, Zhang H, Logothetis D E, Zhan Y and An H 2015 Sci. Rep. 5 11289 35 Wang J, Lu D, Mao D and Long M 2014 Protein Cell 5 518 36 Zhu C, Chen W, Lou J, Rittase W and Li K 2019 Nat. Immunol. 20 1269 37 Lorenz L, Axnick J, Buschmann T, Henning C, Urner S, Fang S, Nurmi H, Eichhorst N, Holtmeier R, Bodis K, Hwang J H, Mussig K, Eberhard D, Stypmann J, Kuss O, Roden M, Alitalo K, Haussinger, D and Lammert E 2018 Nature 562 128 38 Wu X, Hu J, Li G, Li Y, Li Y, Zhang J, Wang F, Li A, Hu L, Fan Z, Lu S, Ding G, Zhang C, Wang J, Long M and Wang S 2020 EMBO J. 39 e102374 39 Tajik A, Zhang Y, Wei F, Sun J, Jia Q, Zhou W, Singh R, Khanna N, Belmont A S and Wang N 2016 Nat. Mater. 15 1287 40 Pollard T D and Cooper J A 2009 Science 326 1208 41 Cox C D, Bavi N and Martinac B 2019 Cell Rep. 29 1 42 Sun Z, Guo S S and Fassler R 2016 J. Cell Biol. 215 445 43 Latorraca N R, Venkatakrishnan A J and Dror R O 2017 Chem. Rev. 117 139 44 Hynes R O 2002 Cell 110 673 45 Luo B H, Carman C V and Springer T A 2007 Ann. Rev. Immunol. 25 619 46 Xie C, Zhu J, Chen X, Mi L, Nishida N and Springer T A 2010 EMBO J. 29 666 47 Sen M, Yuki K and Springer T A 2013 J. Cell Biol. 203 629 48 Michael M and Parsons M 2020 Curr. Opin. Cell Biol. 63 31 49 Alonso. J L, Essafi M, Xiong J P, Stehle T and Arnaout M A 2002 Curr. Biol. 12 R340 50 Xiang X, Lee C Y, Li T, Chen W, Lou J and Zhu C 2011 PLoS One 6 e27946 51 Jin M, Andricioaei I and Springer T A 2004 Structure 12 2137 52 Mao D, Lu S, Li N, Zhang Y and Long M 2011 PLoS One 6 e24188 53 Zhang X, Li L, Li N, Shu X, Zhou L, Lu S, Chen S, Mao D and Long M 2018 FEBS J. 285 261 54 Gaillard T, Dejaegere A and Stote R H 2009 Proteins 76 977 55 Provasi D, Murcia M, Coller B S and Filizola M 2009 Proteins 77 477 56 Puklin-Faucher E, Gao M, Schulten K and Vogel V 2006 J. Cell Biol. 175 349 57 Puklin-Faucher E and Vogel V 2009 J. Biol. Chem. 284 36557 58 Jallu V, Poulain P, Fuchs P F, Kaplan C and de Brevern A G 2014 Biochimie 105 84 59 Laguerre M, Sabi E, Daly M, Stockley J, Nurden P, Pillois X and Nurden A T 2013 PLoS One 8 e78683 60 Levin L, Zelzion E, Nachliel E, Gutman M, Tsfadia Y and Einav Y 2013 PLoS One 8 e59175 61 Kalli A C, Hall B A, Campbell I D and Sansom M S 2011 Structure 19 1477 62 Chng C P and Tan S M 2011 Proteins 79 2203 63 Kalli A C, Campbell I D and Sansom M S 2011 Proc. Natl. Acad. Sci. USA 108 11890 64 Kalli A C, Campbell I D and Sansom M S 2013 PLoS Comput. Biol. 9 e1003316 65 Kalli A C, Wegener K L, Goult B T, Anthis N J, Campbell I D and Sansom M S 2010 Structure 18 1280 66 Provasi D, Negri A, Coller B S and Filizola M 2014 Proteins 82 3231 67 Kalli A C, Rog T, Vattulainen I, Campbell I D and Sansom M S P 2017 J. Membr. Biol. 250 337 68 Chen W, Lou J, Hsin J, Schulten K, Harvey S C and Zhu C 2011 PLoS Comput. Biol. 7 e1001086 69 Kulke M and Langel W 2020 Proteins 88 679 70 Mehrbod M, Trisno S and Mofrad M R 2013 Biophys. J. 105 1304 71 Bidone T C, Polley A, Jin J, Driscoll T, Iwamoto D V, Calderwood D A, Schwartz M A and Voth G A 2019 Biophys. J. 116 1000 72 Bidone T C, Skeeters A V, Oakes P W and Voth G A 2019 PLoS Comput. Biol. 15 e1007077 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|