Abstract Primary radiation damage in hcp Zr, including both defect production in a single collision cascade and damage buildup through cascade overlap, is investigated using molecular dynamics (MD) simulations from a potential energy landscape (PEL) perspective. It is found that the material's response to an energetic particle can be understood as a trajectory in the PEL comprising a fast uphill journey and a slow downhill one. High-temperature-induced damage reduction and the difference in the radiation tolerance between metals and semiconductors can be both qualitatively explained by the dynamics of the trajectory associated with the topographic features of the system's PEL. Additionally, by comparing irradiation and heating under a nearly identical condition, we find that large atomic displacements stemming from the extreme locality of the energy deposition in irradiation events are the key factor leading to radiation damage in a solid. Finally, we discuss the advantages of the PEL perspective and suggest that a combination of the PEL and the traditional crystallographic methods may provide more insights in future work.
Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.