CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Understanding defect production in an hcp Zr crystal upon irradiation: An energy landscape perspective |
Jiting Tian(田继挺)† |
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China |
|
|
Abstract Primary radiation damage in hcp Zr, including both defect production in a single collision cascade and damage buildup through cascade overlap, is investigated using molecular dynamics (MD) simulations from a potential energy landscape (PEL) perspective. It is found that the material's response to an energetic particle can be understood as a trajectory in the PEL comprising a fast uphill journey and a slow downhill one. High-temperature-induced damage reduction and the difference in the radiation tolerance between metals and semiconductors can be both qualitatively explained by the dynamics of the trajectory associated with the topographic features of the system's PEL. Additionally, by comparing irradiation and heating under a nearly identical condition, we find that large atomic displacements stemming from the extreme locality of the energy deposition in irradiation events are the key factor leading to radiation damage in a solid. Finally, we discuss the advantages of the PEL perspective and suggest that a combination of the PEL and the traditional crystallographic methods may provide more insights in future work.
|
Received: 22 August 2020
Revised: 20 September 2020
Accepted manuscript online: 28 September 2020
|
PACS:
|
61.82.-d
|
(Radiation effects on specific materials)
|
|
61.80.Jh
|
(Ion radiation effects)
|
|
61.72.Cc
|
(Kinetics of defect formation and annealing)
|
|
61.72.Bb
|
(Theories and models of crystal defects)
|
|
Corresponding Authors:
†Corresponding author. E-mail: tianjiting@pku.edu.cn
|
Cite this article:
Jiting Tian(田继挺) Understanding defect production in an hcp Zr crystal upon irradiation: An energy landscape perspective 2021 Chin. Phys. B 30 026102
|
1 De La Rubia T D, Averback R, Benedek R and King W 1987 Phys. Rev. Lett. 59 1930 2 De La Rubia T D and Guinan M 1991 Phys. Rev. Lett. 66 2766 3 Nordlund K and Averback R 1997 Phys. Rev. B 56 2421 4 Nordlund K, Ghaly M, Averback R, Caturla M, de La Rubia T D and Tarus J 1998 Phys. Rev. B 57 7556 5 de la Rubia T D, Zbib H M, Khraishi T A, Wirth B D, Victoria M and Caturla M J 2000 Nature 406 871 6 Fu C C, Dalla Torre J, Willaime F, Bocquet J L and Barbu A 2005 Nat. Mater. 4 68 7 Bai X M, Voter A F, Hoagland R G, Nastasi M and Uberuaga B P 2010 Science 327 1631 8 Stoller R2012 Comprehensive Nuclear Materials (Elsevier) 1 293 9 Zinkle S J and Was G 2013 Acta Mater. 61 735 10 Zinkle S J and Snead L L 2014 Ann. Rev. Mater. Res. 44 241 11 Nordlund K and Djurabekova F 2014 J. Comput. Electron. 13 122 12 Krishnan N A, Wang B, Yu Y, Le Pape Y, Sant G and Bauchy M 2017 Phys. Rev. X 7 031019 13 Krasheninnikov A and Nordlund K 2010 J. Appl. Phys. 107 3 14 Nordlund K, Bjorkas C, Ahlgren T, Lasa A and Sand A 2014 J. Phys. D: Appl. Phys. 47 224018 15 Kinchin G and Pease R 1995 Rep. Prog. Phys. 18 1 16 Sigmund P and Claussen C 1981 J. Appl. Phys. 52 990 17 Wang Z, Dufour C, Paumier E and Toulemonde M 1994 J. Phys.: Condens. Matter 6 6733 18 Schaublin R and Gotthardt R 1996 Philos. Mag. A 74 593 19 Calder A, Bacon D J, Barashev A V and Osetsky Y N 2010 Philos. Mag. 90 863 20 Korchuganov A, Zolnikov K, Kryzhevich D, Chernov V and Psakhie S G 2015 Nucl. Instrum. Methods Phys. Res. B 352 39 21 Stillinger F H 1995 Science 267 1935 22 Sastry S, Debenedetti P G and Stillinger F H 1998 Nature 393 554 23 Debenedetti P G and Stillinger F H 2001 Nature 410 259 24 Frauenfelder H, Sligar S G and Wolynes P G 1991 Science 254 1598 25 Wang J, Onuchic J and Wolynes P 1996 Phys. Rev. Lett. 76 4861 26 Becker O M and Karplus M 1997 J. Chem. Phys. 106 1495 27 Lacks D J 1998 Phys. Rev. Lett. 80 5385 28 Fan Y, Osetskiy Y N, Yip S and Yildiz B 2013 Proc. Nat. Acad. Sci. USA 110 17756 29 Fan Y, Iwashita T and Egami T 2014 Nat. Commun. 5 5083 30 Plimpton S 1995 J. Comput. Phys. 117 1 31 Zhou W, Tian J, Zheng J, Xue J and Peng S 2016 Sci. Rep. 6 21034 32 Tian J, Zhou W, Feng Q and Zheng J 2018 Appl. Surf. Sci. 435 65 33 Zhou W, Tian J, Feng Q, Zheng J, Liu X, Xue J, Qian D and Peng S 2018 J. Nucl. Mater. 508 540 34 Martyna G J, Klein M L and Tuckerman M 1992 J. Chem. Phys. 97 2635 35 Gao F and Weber W J 2002 Phys. Rev. B 66 024106 36 Granberg F, Byggmastar J, Sand A and Nordlund K 2017 Europhys. Lett. 119 56003 37 Zhang S, Nordlund K, Djurabekova F, Granberg F, Zhang Y and Wang T 2017 Mater. Res. Lett. 5 433 38 Granberg F, Nordlund K, Ullah M W, Jin K, Lu C, Bei H, Wang L, Djurabekova F, Weber W and Zhang Y 2016 Phys. Rev. Lett. 116 135504 39 Norgett M, Robinson M and Torrens I 1975 Nucl. Eng. Design 33 50 40 Idrees Y, Yao Z, Kirk M and Daymond M 2013 J. Nucl. Mater. 433 95 41 Yu H, Yao Z, Idrees Y, Zhang H K, Kirk M A and Daymond M R 2017 J. Nucl. Mater. 491 232 42 Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012 43 Grippo L and Lucidi S 1997 Mathematical Programming 78 375 44 Gao F, Bacon D, Howe L and So C 2001 J. Nucl. Mater. 294 288 45 Fan Y, Kushima A, Yip S and Yildiz B 2011 Phys. Rev. Lett. 106 125501 46 Fan Y, Yip S and Yildiz B 2014 J. Phys.: Condens. Matter 26 365402 47 Averback R, Benedek R and Merkle K 1978 Phys. Rev. B 18 4156 48 Zhong L, Wang J, Sheng H, Zhang Z and Mao S X 2014 Nature 512 177 49 Race C, Mason D, Finnis M, Foulkes W, Horsfield A and Sutton A 2010 Rep. Prog. Phys. 73 116501 50 Nordlund K, Zinkle S J, Sand A E, et al. 2018 Nat. Commun. 9 1084 51 Simeone D and Luneville L 2010 Phys. Rev. E 81 021115 52 Boulle A and Debelle A 2016 Phys. Rev. Lett. 116 245501 53 Uberuaga B, Hoagland R, Voter A and Valone S 2007 Phys. Rev. Lett. 99 135501 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|