Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 026102    DOI: 10.1088/1674-1056/abbbe0
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Understanding defect production in an hcp Zr crystal upon irradiation: An energy landscape perspective

Jiting Tian(田继挺)†
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  Primary radiation damage in hcp Zr, including both defect production in a single collision cascade and damage buildup through cascade overlap, is investigated using molecular dynamics (MD) simulations from a potential energy landscape (PEL) perspective. It is found that the material's response to an energetic particle can be understood as a trajectory in the PEL comprising a fast uphill journey and a slow downhill one. High-temperature-induced damage reduction and the difference in the radiation tolerance between metals and semiconductors can be both qualitatively explained by the dynamics of the trajectory associated with the topographic features of the system's PEL. Additionally, by comparing irradiation and heating under a nearly identical condition, we find that large atomic displacements stemming from the extreme locality of the energy deposition in irradiation events are the key factor leading to radiation damage in a solid. Finally, we discuss the advantages of the PEL perspective and suggest that a combination of the PEL and the traditional crystallographic methods may provide more insights in future work.
Keywords:  displacement cascades      molecular dynamics      potential energy landscape      metals  
Received:  22 August 2020      Revised:  20 September 2020      Accepted manuscript online:  28 September 2020
PACS:  61.82.-d (Radiation effects on specific materials)  
  61.80.Jh (Ion radiation effects)  
  61.72.Cc (Kinetics of defect formation and annealing)  
  61.72.Bb (Theories and models of crystal defects)  
Corresponding Authors:  Corresponding author. E-mail: tianjiting@pku.edu.cn   

Cite this article: 

Jiting Tian(田继挺) Understanding defect production in an hcp Zr crystal upon irradiation: An energy landscape perspective 2021 Chin. Phys. B 30 026102

1 De La Rubia T D, Averback R, Benedek R and King W 1987 Phys. Rev. Lett. 59 1930
2 De La Rubia T D and Guinan M 1991 Phys. Rev. Lett. 66 2766
3 Nordlund K and Averback R 1997 Phys. Rev. B 56 2421
4 Nordlund K, Ghaly M, Averback R, Caturla M, de La Rubia T D and Tarus J 1998 Phys. Rev. B 57 7556
5 de la Rubia T D, Zbib H M, Khraishi T A, Wirth B D, Victoria M and Caturla M J 2000 Nature 406 871
6 Fu C C, Dalla Torre J, Willaime F, Bocquet J L and Barbu A 2005 Nat. Mater. 4 68
7 Bai X M, Voter A F, Hoagland R G, Nastasi M and Uberuaga B P 2010 Science 327 1631
8 Stoller R2012 Comprehensive Nuclear Materials (Elsevier) 1 293
9 Zinkle S J and Was G 2013 Acta Mater. 61 735
10 Zinkle S J and Snead L L 2014 Ann. Rev. Mater. Res. 44 241
11 Nordlund K and Djurabekova F 2014 J. Comput. Electron. 13 122
12 Krishnan N A, Wang B, Yu Y, Le Pape Y, Sant G and Bauchy M 2017 Phys. Rev. X 7 031019
13 Krasheninnikov A and Nordlund K 2010 J. Appl. Phys. 107 3
14 Nordlund K, Bjorkas C, Ahlgren T, Lasa A and Sand A 2014 J. Phys. D: Appl. Phys. 47 224018
15 Kinchin G and Pease R 1995 Rep. Prog. Phys. 18 1
16 Sigmund P and Claussen C 1981 J. Appl. Phys. 52 990
17 Wang Z, Dufour C, Paumier E and Toulemonde M 1994 J. Phys.: Condens. Matter 6 6733
18 Schaublin R and Gotthardt R 1996 Philos. Mag. A 74 593
19 Calder A, Bacon D J, Barashev A V and Osetsky Y N 2010 Philos. Mag. 90 863
20 Korchuganov A, Zolnikov K, Kryzhevich D, Chernov V and Psakhie S G 2015 Nucl. Instrum. Methods Phys. Res. B 352 39
21 Stillinger F H 1995 Science 267 1935
22 Sastry S, Debenedetti P G and Stillinger F H 1998 Nature 393 554
23 Debenedetti P G and Stillinger F H 2001 Nature 410 259
24 Frauenfelder H, Sligar S G and Wolynes P G 1991 Science 254 1598
25 Wang J, Onuchic J and Wolynes P 1996 Phys. Rev. Lett. 76 4861
26 Becker O M and Karplus M 1997 J. Chem. Phys. 106 1495
27 Lacks D J 1998 Phys. Rev. Lett. 80 5385
28 Fan Y, Osetskiy Y N, Yip S and Yildiz B 2013 Proc. Nat. Acad. Sci. USA 110 17756
29 Fan Y, Iwashita T and Egami T 2014 Nat. Commun. 5 5083
30 Plimpton S 1995 J. Comput. Phys. 117 1
31 Zhou W, Tian J, Zheng J, Xue J and Peng S 2016 Sci. Rep. 6 21034
32 Tian J, Zhou W, Feng Q and Zheng J 2018 Appl. Surf. Sci. 435 65
33 Zhou W, Tian J, Feng Q, Zheng J, Liu X, Xue J, Qian D and Peng S 2018 J. Nucl. Mater. 508 540
34 Martyna G J, Klein M L and Tuckerman M 1992 J. Chem. Phys. 97 2635
35 Gao F and Weber W J 2002 Phys. Rev. B 66 024106
36 Granberg F, Byggmastar J, Sand A and Nordlund K 2017 Europhys. Lett. 119 56003
37 Zhang S, Nordlund K, Djurabekova F, Granberg F, Zhang Y and Wang T 2017 Mater. Res. Lett. 5 433
38 Granberg F, Nordlund K, Ullah M W, Jin K, Lu C, Bei H, Wang L, Djurabekova F, Weber W and Zhang Y 2016 Phys. Rev. Lett. 116 135504
39 Norgett M, Robinson M and Torrens I 1975 Nucl. Eng. Design 33 50
40 Idrees Y, Yao Z, Kirk M and Daymond M 2013 J. Nucl. Mater. 433 95
41 Yu H, Yao Z, Idrees Y, Zhang H K, Kirk M A and Daymond M R 2017 J. Nucl. Mater. 491 232
42 Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012
43 Grippo L and Lucidi S 1997 Mathematical Programming 78 375
44 Gao F, Bacon D, Howe L and So C 2001 J. Nucl. Mater. 294 288
45 Fan Y, Kushima A, Yip S and Yildiz B 2011 Phys. Rev. Lett. 106 125501
46 Fan Y, Yip S and Yildiz B 2014 J. Phys.: Condens. Matter 26 365402
47 Averback R, Benedek R and Merkle K 1978 Phys. Rev. B 18 4156
48 Zhong L, Wang J, Sheng H, Zhang Z and Mao S X 2014 Nature 512 177
49 Race C, Mason D, Finnis M, Foulkes W, Horsfield A and Sutton A 2010 Rep. Prog. Phys. 73 116501
50 Nordlund K, Zinkle S J, Sand A E, et al. 2018 Nat. Commun. 9 1084
51 Simeone D and Luneville L 2010 Phys. Rev. E 81 021115
52 Boulle A and Debelle A 2016 Phys. Rev. Lett. 116 245501
53 Uberuaga B, Hoagland R, Voter A and Valone S 2007 Phys. Rev. Lett. 99 135501
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[12] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[13] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[14] Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal
Yong Zhang(张勇), Xinliang Huang(黄新亮), Jinglei Zhang(张警蕾), Wenshuai Gao(高文帅), Xiangde Zhu(朱相德), and Li Pi(皮雳). Chin. Phys. B, 2022, 31(3): 037102.
[15] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
No Suggested Reading articles found!