Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(10): 4319-4325    DOI: 10.1088/1674-1056/18/10/038
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Surface defect gap solitons in one-dimensional dual-frequency lattices

Zhu Wei-Ling(朱伟玲)a), Luo Li(罗莉)b), He Ying-Ji(何影记)c), and Wang He-Zhou(汪河洲)d)
a School of Science, Maoming University, Maoming 525000, China; b School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; c School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou 510665, China; d State Key Laboratory of Optoelectronic Materials and Technologies, Zhongshan (Sun Yat-Sen) University, Guangzhou 510275, China
Abstract  We study the surface defect gap solitons in an interface between a defect of one-dimensional dual-frequency lattices and the uniform media. Some unique properties are revealed that such lattices can broaden the region of semi-finite gap, and the semi-finite gap exists not only in the positive and zero defects but also in the negative defect; unlike in the regular lattices, the semi-finite gap exists in the positive and zero defects but does not exist in the negative defect. In particular, stable solitons exist almost in the whole semi-finite gap for the positive and zero defects. These properties are different from other lattices with defects. In addition, it is found that the existence of surface dual-frequency lattice solitons does not need a threshold power.
Keywords:  dual-frequency lattices      surface defect gap solitons  
Received:  13 November 2008      Revised:  18 May 2009      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.Wi (Nonlinear waveguides)  
  78.68.+m (Optical properties of surfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10774031) and Natural Science Foundation of Guangdong Province of China (Grant No 07001790).

Cite this article: 

Zhu Wei-Ling(朱伟玲), Luo Li(罗莉), He Ying-Ji(何影记), and Wang He-Zhou(汪河洲) Surface defect gap solitons in one-dimensional dual-frequency lattices 2009 Chin. Phys. B 18 4319

[1] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[2] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[3] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
[4] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[5] Photonic-plasmonic hybrid microcavities: Physics and applications
Hongyu Zhang(张红钰), Wen Zhao(赵闻), Yaotian Liu(刘耀天), Jiali Chen(陈佳丽), Xinyue Wang(王欣月), and Cuicui Lu(路翠翠). Chin. Phys. B, 2021, 30(11): 117801.
[6] Omnidirectional and compact Tamm phonon-polaritons enhanced mid-infrared absorber
Xiaomin Hua(花小敏), Gaige Zheng(郑改革), Fenglin Xian(咸冯林), Dongdong Xu(徐董董), and Shengyao Wang(王升耀). Chin. Phys. B, 2021, 30(8): 084202.
[7] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[8] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[9] Effect of Sm doping into CuInTe2 on cohesive energy before and after light absorption
Tai Wang(王泰), Yong-Quan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(4): 043101.
[10] Thermal tunable one-dimensional photonic crystals containing phase change material
Yuanlin Jia(贾渊琳), Peiwen Ren(任佩雯), and Chunzhen Fan(范春珍)†. Chin. Phys. B, 2020, 29(10): 104210.
[11] One-dimensional structure made of periodic slabs of SiO2/InSb offering tunable wide band gap at terahertz frequency range
Sepehr Razi, Fatemeh Ghasemi. Chin. Phys. B, 2019, 28(12): 124205.
[12] Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals
Dong-Liang Pei(裴东亮), Tao Yang(杨洮), Meng Chen(陈猛), Heng Jiang(姜恒). Chin. Phys. B, 2019, 28(12): 124301.
[13] Amplitude and phase controlled absorption and dispersion of coherently driven five-level atom in double-band photonic crystal
Li Jiang(姜丽), Ren-Gang Wan(万仁刚). Chin. Phys. B, 2019, 28(2): 024206.
[14] Semiconductor photonic crystal laser
Wanhua Zheng(郑婉华). Chin. Phys. B, 2018, 27(11): 114211.
[15] Influence of temperature on the properties of one-dimensional piezoelectric phononic crystals
Ahmed Nagaty, Ahmed Mehaney, Arafa H Aly. Chin. Phys. B, 2018, 27(9): 094301.
No Suggested Reading articles found!