Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(10): 3713-3719    DOI: 10.1088/1674-1056/17/10/030
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Light scattering of nanocrystalline TiO2 film used in dye-sensitized solar cells

Xiong Bi-Tao(熊必涛), Zhou Bao-Xue(周保学), Bai Jing(白晶), Zheng Qing(郑青), Liu Yan-Biao(刘艳彪), Cai Wei-Min(蔡伟民), and Cai Jun(蔡俊)
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  This paper studies the light scattering and adsorption of nanocrystalline TiO$_2$ porous films used in dye-sensitized solar cells composed of anatase and/or rutile particles by using an optical four-flux radiative transfer model. These light properties are difficult to measure directly on the functioning solar cells and they can not be calculated easily from the first-principle computational or quantitative theoretical evaluations. These simulation results indicate that the light scattering of 1--25 nm TiO$_{2}$ particles is negligible, but it is effective in the range of 80 and 180 nm. A suitable mixture of small particles (10 nm radius), which are resulted in a large effective surface, and of larger particles (150 nm radius), which are effective light scatterers, have the potential to enhance solar absorption significantly. The rutile crystals have a larger refractive index and thus the light harvest of the mixtures of such larger rutile and relatively small anatase particles is improved in comparison with that of pure anatase films. The light absorption of the 10 $\mu$m double-layered films is also examined. A maximal light absorption of double-layered film is gotten when the thickness of the first layer of 10\,nm-sized anatase particles is comparable to that of the second larger rutile layer.
Keywords:  light scattering      modelling      films      dye-sensitized solar cells  
Received:  30 November 2007      Revised:  07 March 2008      Accepted manuscript online: 
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  78.66.Li (Other semiconductors)  
  78.35.+c (Brillouin and Rayleigh scattering; other light scattering)  
  84.60.Jt (Photoelectric conversion)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the Program of Science and Technology Commission of Shanghai Municipality (Grant No 03DZ12032) and the Program for New Century Excellent Talents in University in China (Grant No NCET-04-0406).

Cite this article: 

Xiong Bi-Tao(熊必涛), Zhou Bao-Xue(周保学), Bai Jing(白晶), Zheng Qing(郑青), Liu Yan-Biao(刘艳彪), Cai Wei-Min(蔡伟民), and Cai Jun(蔡俊) Light scattering of nanocrystalline TiO2 film used in dye-sensitized solar cells 2008 Chin. Phys. B 17 3713

[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[5] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
[6] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[7] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[8] Phase transition-induced superstructures of β-Sn films with atomic-scale thickness
Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海). Chin. Phys. B, 2021, 30(9): 096804.
[9] Effect of Mo doping on phase change performance of Sb2Te3
Wan-Liang Liu(刘万良), Ying Chen(陈莹), Tao Li(李涛), Zhi-Tang Song(宋志棠), and Liang-Cai Wu(吴良才). Chin. Phys. B, 2021, 30(8): 086801.
[10] Collective excitations and quantum size effects on the surfaces of Pb(111) films: An experimental study
Yade Wang(王亚德), Zijian Lin(林子荐), Siwei Xue(薛思玮), Jiade Li(李佳德), Yi Li(李毅), Xuetao Zhu(朱学涛), and Jiandong Guo(郭建东). Chin. Phys. B, 2021, 30(7): 077308.
[11] Fabrication and characterization of Al-Mn superconducting films for applications in TES bolometers
Qing Yu(余晴), Yi-Fei Zhang(张翼飞), Chang-Hao Zhao(赵昌昊), Kai-Yong He(何楷泳), Ru-Tian Huang(黄汝田), Yong-Cheng He(何永成), Xin-Yu Wu(吴歆宇), Jian-She Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(7): 077402.
[12] Neoclassical tearing mode stabilization by electron cyclotron current drive for HL-2M tokamak
Jing-Chun Li(李景春), Jia-Qi Dong(董家齐), Xiao-Quan Ji(季小全), and You-Jun Hu(胡友俊). Chin. Phys. B, 2021, 30(7): 075203.
[13] Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films
Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋). Chin. Phys. B, 2021, 30(6): 067802.
[14] Reconstruction and interpretation of photon Doppler velocimetry spectrum for ejecta particles from shock-loaded sample in vacuum
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Song-lin Dang(党松琳), Zong-Qiang Ma(马宗强), Hai-Quan Sun(孙海权), An-Min He(何安民), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(6): 066201.
[15] Effect of metal nanoparticle doping concentration on surface morphology and field emission properties of nano-diamond films
Yao Wang(王垚), Sheng-Wang Yu(于盛旺), Yan-Peng Xue(薛彦鹏), Hong-Jun Hei(黑鸿君), Yan-Xia Wu(吴艳霞), and Yan-Yan Shen(申艳艳). Chin. Phys. B, 2021, 30(6): 068101.
No Suggested Reading articles found!