CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Reconstruction and interpretation of photon Doppler velocimetry spectrum for ejecta particles from shock-loaded sample in vacuum |
Xiao-Feng Shi(石晓峰)1, Dong-Jun Ma(马东军)1,†, Song-lin Dang(党松琳)2, Zong-Qiang Ma(马宗强)1, Hai-Quan Sun(孙海权)1, An-Min He(何安民)1, and Pei Wang(王裴)1,3,‡ |
1 Institute of Applied Physical and Computational Mathematics, Beijing 100094, China; 2 Jiangxi University of Applied Science, Nanchang 330103, China; 3 Center for Applied Physics and Technology, Peking University, Beijing 100871, China |
|
|
Abstract The photon Doppler velocimetry (PDV) spectrum is investigated in an attempt to reveal the particle parameters of ejecta from shock-loaded samples in a vacuum. A GPU-accelerated Monte-Carlo algorithm, which considers the multiple-scattering effects of light, is applied to reconstruct the light field of the ejecta and simulate the corresponding PDV spectrum. The influence of the velocity profile, total area mass, and particle size of the ejecta on the simulated spectra is discussed qualitatively. To facilitate a quantitative discussion, a novel theoretical optical model is proposed in which the single-scattering assumption is applied. With this model, the relationships between the particle parameters of ejecta and the peak information of the PDV spectrum are derived, enabling direct extraction of the particle parameters from the PDV spectrum. The values of the ejecta parameters estimated from the experimental spectrum are in good agreement with those measured by a piezoelectric probe.
|
Received: 02 December 2020
Revised: 05 January 2021
Accepted manuscript online: 08 January 2021
|
PACS:
|
62.50.Ef
|
(Shock wave effects in solids and liquids)
|
|
42.25.Dd
|
(Wave propagation in random media)
|
|
42.79.Qx
|
(Range finders, remote sensing devices; laser Doppler velocimeters, SAR, And LIDAR)
|
|
62.20.M-
|
(Structural failure of materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11902043 and 11772065) and the Science Challenge Project (Grant No. TZ2016001). |
Corresponding Authors:
Dong-Jun Ma, Pei Wang
E-mail: ma_dongjun@iapcm.ac.cn;wangpei@iapcm.ac.cn
|
Cite this article:
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Song-lin Dang(党松琳), Zong-Qiang Ma(马宗强), Hai-Quan Sun(孙海权), An-Min He(何安民), and Pei Wang(王裴) Reconstruction and interpretation of photon Doppler velocimetry spectrum for ejecta particles from shock-loaded sample in vacuum 2021 Chin. Phys. B 30 066201
|
[1] Sollier A and Lescoute E 2020 Int. J. Impact Eng. 136 103429 [2] Monfared S K, Oro D M, Graver M, Hammerberg J E, Lalone B M, Pack C L, Schauer M M, Stevens G D, Stone J B and Turley W D 2014 J. Appl. Phys. 116 063504 [3] Asay J R, Mix L P and Perry F C 1976 Appl. Phys. Lett. 29 284 [4] Speight C S, Harper L and Smeeton V S 1989 Rev. Sci. Instrum. 60 3802 [5] Ogorodnikov V A, Ivanov A G, Mikhailov A L, Kryukov N I and Golubev V A 1998 Combust. Explos. Shock Waves 34 696 [6] Buttler W T, Williams R J R and Najjar F M 2017 J. Dyn. Behav. Mater. 3 151 [7] Yeager J D, Bowden P R, Guildenbecher D R and Olles J D 2017 J. Appl. Phys. 122 035901 [8] Held M 1996 Propellants Explos. Pyrotech. 21 235 [9] Tokheim R E, Curran D R, Seaman L, Cooper T and Schirmann D 1999 Int. J. Impact Eng. 23 933 [10] Masters N D, Fisher A, Kalantar D, Stlken J, Smith C, Vignes R, Burns S, Doeppner T, Kritcher A and Park H S 2016 J. Phys.: Conf. Ser. 717 012108 [11] Asay J R 1978 J. Appl. Phys. 49 6173 [12] He W, Xin J, Chu G, Li J and Gu Y 2014 Opt. Express 22 18924 [13] Vogan W S, Anderson W W, Grover M, Hammerberg J E, King N S P, Lamoreaux S K, Macrum G, Morley K B, Rigg P A and Stevens G D 2005 J. Appl. Phys. 98 113508 [14] Sorenson D S, Minich R W, Romero J L, Tunnell T W and Malone R M 2002 J. Appl. Phys. 92 5830 [15] Sorenson D S, Capelle G A, Grover M, Johnson R P and Turley W D 2017 J. Dyn. Behav. Mater. 3 233 [16] Hammerberg J E, Buttler W T, Llobet A, Morris C, Goett J, Manzanares R, Saunders A, Schmidt D, Tainter A and Vogan-Mcneil W 2018 AIP Conf. Proc. 1979 080006 [17] Monfared S K, Buttler W T, Frayer D K, Grover M, LaLone B M, Stevens G D, Stone J B, Turley W D and Schauer M M 2015 J. Appl. Phys. 117 223105 [18] La-Lone B M, Marshall B R, Miller E K, Stevens G D, Turley W D and Veeser L R 2015 Rev. Sci. Instrum. 86 023112 [19] Ogorodnikov V A, Mikhaylov A L, Erunov S V, Antipov M V and Chudakov E A 2017 J. Dyn. Behav. Mater. 3 225 [20] Andriyash A V, Astashkin M V, Baranov V K, Golubinskii A G, Irinichev D A, Khatunkin V Y, Kondratev A N, Kuratov S E, Mazanov V A, Rogozkin D B and Stepushkin S N 2018 J. Appl. Phys. 123 243102 [21] Buttler W T, Oro D M, Dimonte G, et al. 2009 In Proceedings NEDPC 2009. LA-UR-10-00734 [22] Sun H, Wang P, Chen D and Ma D 2016 Acta Phys. Sin. 65 104702 (in Chinese) [23] Fedorov A V, Gnutov I S and Yagovkin A O 2018 J. Exp. Theor. Phys. 126 76 [24] Kondrat'Ev A, Andriyash A V and Kuratov S E 2020 J. Quantum Spectrosc. Radiat. Transfer 246 106925 [25] Buttler W T, Oro D M, Dimonte G, et al. 2009 In Proceedings NEDPC 2009, LA-UR-10-00734 [26] Reguigui N M, Ackerson B J, Dorri-Nowkoorani F, Dougherty R L and Nobbmann U 1997 J. Thermophys. Heat Transfer 11 400 [27] Binzoni T, Liemert A, Kienle A and Martelli F 2016 Appl. Opt. 55 8500 [28] Mie G 1908 Ann. Phys. 25 377 [29] Durand O and Soulard L 2015 J. Appl. Phys. 117 165903 [30] Durand O and Soulard L 2012 J. Appl. Phys. 111 044901 [31] Schauer M M, Buttler W T, Frayer D K, Grover M and Turley W D 2017 J. Dyn. Behav. Mater. 3 217 [32] He A, Wang P, Shao J and Duan S 2017 Chin. Phys. B 23 047102 [33] Bell D J, Routley N R, Millett J C F, Whiteman G and Keightley P T 2017 J. Dyn. Behav. Mater. 3 208 [34] Andriyash A V, A D S, Zhakhovskya V V, Kalashnikovc D A, Kondrateva A N, Kuratova S E, Mikhailovc A L, Rogozkina D B, Fedorovc A V, Finyushinc S A and Chudakovc E A 2020 J. Exp. Theor. Phys. 130 338 [35] Franzkowiak J E, Mercier P, Prudhomme G and Berthe L 2018 Appl. Opt. 57 11 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|