|
|
Painlevé property, local and nonlocal symmetries, and symmetry reductions for a (2+1)-dimensional integrable KdV equation |
Xiao-Bo Wang(王晓波), Man Jia(贾曼), and Sen-Yue Lou(楼森岳) |
School of Physical Science and Technology, Ningbo University, Ningbo\/ 315211, China |
|
|
Abstract The Painlevé property for a (2+1)-dimensional Korteweg-de Vries (KdV) extension, the combined KP3 (Kadomtsev-Petviashvili) and KP4 (cKP3-4), is proved by using Kruskal's simplification. The truncated Painlevé expansion is used to find the Schwartz form, the B\"acklund/Levi transformations, and the residual nonlocal symmetry. The residual symmetry is localized to find its finite B\"acklund transformation. The local point symmetries of the model constitute a centerless Kac-Moody-Virasoro algebra. The local point symmetries are used to find the related group-invariant reductions including a new Lax integrable model with a fourth-order spectral problem. The finite transformation theorem or the Lie point symmetry group is obtained by using a direct method.
|
Revised: 30 July 2020
Accepted manuscript online:
|
PACS:
|
05.45.Yv
|
(Solitons)
|
|
02.30.Ik
|
(Integrable systems)
|
|
47.20.Ky
|
(Nonlinearity, bifurcation, and symmetry breaking)
|
|
52.35.Mw
|
(Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975131 and 11435005) and the K C Wong Magna Fund in Ningbo University.\vglue2pt |
Corresponding Authors:
†Corresponding author. E-mail: lousenyue@nbu.edu.cn
|
Cite this article:
Xiao-Bo Wang(王晓波), Man Jia(贾曼), and Sen-Yue Lou(楼森岳) Painlevé property, local and nonlocal symmetries, and symmetry reductions for a (2+1)-dimensional integrable KdV equation 2021 Chin. Phys. B 30 010501
|
1 Lou S Y 1056/ab9699 2020 Chin. Phys. B 29 080502 DOI: http://dx.doi.org/10.1088/1674- 2 Crighton D G1995 Appl. Math. 39 39 3 Kadomtsev B B and Petviashvili V I1970 Sov. Phys. Dokl. 15 539 4 Nizhnik L P1980 Sov. Phys. Dokl. 25 706 5 Veselov A P and Novikov S P1984 Sov. Math. Dokl. 30 588 6 Novikov S P and Veselov A P 2789(86)90187- 9 1986 Physica D 18 267 DOI: http://dx.doi.org/10.1016/0167- 7 Lou S Y and Hu X B 1997 J. Math. Phys. 38 6401 DOI: http://dx.doi.org/10.1063/1.532219 8 Lou S Y and Ruan H Y 4470/35/2/310 2001 J. Phys. A: Math. Gen. 35 305 DOI: http://dx.doi.org/10.1088/0305- 9 Boiti M, Leon J J P, Manna M and Pempinelli F 5611/2/3/005 1986 Inverse Problems 2 271 DOI: http://dx.doi.org/10.1088/0266- 10 Ito M 1990 J. Phys. Soc. Jpn. 49 771 DOI: http://dx.doi.org/10.1143/JPSJ.49.771 11 Lou S Y 6528/ab833e 2020 J. Phys. Commun. 4 041002 DOI: http://dx.doi.org/10.1088/2399- 12 Xu D H and Lou S Y 2020 Acta Phys. Sin. 69 014208 (in Chinese) DOI: http://dx.doi.org/10.7498/aps.69.20191347 13 Yan Z W and Lou S Y 2020 Appl. Math. Lett. 104 106271 DOI: http://dx.doi.org/10.1016/j.aml.2020.106271 14 Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24 522 DOI: http://dx.doi.org/10.1063/1.525721 15 Conte R 9601(89)90072- 8 1989 Phys. Lett. A 140 383 DOI: http://dx.doi.org/10.1016/0375- 16 Lou S Y 1998- 0523 1998 Z. Naturforsch A 53 251 DOI: http://dx.doi.org/10.1515/zna- 17 Gao X N, Lou S Y and Tang X Y2013 J. High Energy Phys. 5 029 18 Li Y Q, Chen J C, Chen Y and Lou S Y 307X/31/1/010201 2014 Chin. Phys. Lett. 31 010201 DOI: http://dx.doi.org/10.1088/0256- 19 Liu S J, Tang X Y and Lou S Y 1056/27/6/060201 2018 Chin. Phys. B 27 060201 DOI: http://dx.doi.org/10.1088/1674- 20 Lou S Y, Hu X R and Chen Y 8113/45/15/155209 2012 J. Phys. A: Math. Theor. 45 155209 DOI: http://dx.doi.org/10.1088/1751- 21 Cheng X P, Chen C L and Lou S Y 2014 Wave Motion 51 1298 DOI: http://dx.doi.org/10.1016/j.wavemoti.2014.07.012 22 Lou S Y 1993 Phys. Rev. Lett. 71 4099 DOI: http://dx.doi.org/10.1103/PhysRevLett.71.4099 23 Lou S Y 4470/26/17/043 1993 J. Phys. A: Math. Gen. 26 4387 DOI: http://dx.doi.org/10.1088/0305- 24 David D, Kamran N, Levi D and Winternitz P 1986 J. Math. Phys. 27 1225 DOI: http://dx.doi.org/10.1063/1.527129 25 Lou S Y, Rogers C and Schief W K 2003 J. Math. Phys. 44 5869 DOI: http://dx.doi.org/10.1063/1.1625077 26 Lou S Y and Tang X Y 2004 J. Math. Phys. 45 1020 DOI: http://dx.doi.org/10.1063/1.1645651 27 Lou S Y and Ma H C2005 J. Phys.A: Math. Gen. 38 L129 28 Lou S Y and Ma H C 2006 Chaos, Solitons and Fractals 30 804 DOI: http://dx.doi.org/10.1016/j.chaos.2005.04.090 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|