Special Issue:
SPECIAL TOPIC — Two-dimensional magnetic materials and devices
|
SPECIAL TOPIC—Two-dimensional magnetic materials and devices |
Prev
Next
|
|
|
Vertical WS2 spin valve with Ohmic property based on Fe3GeTe2 electrodes |
Ce Hu(胡策)1,2, Faguang Yan(闫法光)1, Yucai Li(李予才)1,2, and Kaiyou Wang(王开友)1,2,3,† |
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China |
|
|
Abstract The two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have been recently proposed as a promising class of materials for spintronic applications. Here, we report on the all-2D van der Waals (vdW) heterostructure spin valve device comprising of an exfoliated ultra-thin WS2 semiconductor acting as the spacer layer and two exfoliated ferromagnetic Fe3GeTe2 (FGT) metals acting as ferromagnetic electrodes. The metallic interface rather than Schottky barrier is formed despite the semiconducting nature of WS2, which could be originated from the strong interface hybridization. The spin valve effect persists up to the Curie temperature of FGT. Moreover, our metallic spin valve devices exhibit robust spin valve effect where the magnetoresistance magnitude does not vary with the applied bias in the measured range up to 50 μA due to the Ohmic property, which is a highly desirable feature for practical application that requires stable device performance. Our work reveals that WS2-based all-2D magnetic vdW heterostructure, facilitated by combining 2D magnets, is expected to be an attractive candidate for the TMDCs-based spintronic applications.
|
Received: 25 February 2021
Revised: 22 March 2021
Accepted manuscript online: 03 June 2021
|
PACS:
|
75.70.Cn
|
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
|
|
85.75.Bb
|
(Magnetic memory using giant magnetoresistance)
|
|
72.25.Mk
|
(Spin transport through interfaces)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303400), the National Natural Science Foundation of China (Grant No. 61774144), Beijing Natural Science Foundation Key Program (Grant No. Z190007), and Chinese Academy of Sciences (Grant Nos. QYZDY-SSW-JSC020, XDB44000000, and XDB28000000). |
Corresponding Authors:
Kaiyou Wang
E-mail: kywang@semi.ac.cn
|
Cite this article:
Ce Hu(胡策), Faguang Yan(闫法光), Yucai Li(李予才), and Kaiyou Wang(王开友) Vertical WS2 spin valve with Ohmic property based on Fe3GeTe2 electrodes 2021 Chin. Phys. B 30 097505
|
[1] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotech. 7 699 [2] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 [3] Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C 2014 ACS Nano 8 1102 [4] Mak K F and Shan J 2016 Nat. Photon. 10 216 [5] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343 [6] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344 [7] Wang W, Narayan A, Tang L, Dolui K, Liu Y, Yuan X, Jin Y, Wu Y, Rungger I, Sanvito S and Xiu F 2015 Nano Lett. 15 5261 [8] Lin X, Yang W, Wang K L and Zhao W 2019 Nat. Electron. 2 274 [9] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [10] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270 [11] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y, Wu S, Zhu J, Wang J, Chen X and Zhang Y 2018 Nature 563 94 [12] Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M and Batzill M 2018 Nat. Nanotech. 13 289 [13] Ghazaryan D, Greenaway M T, Wang Z, Guarochico-Moreira V H, Vera-Marun I J, Yin J, Liao Y, Morozov S V, Kristanovski O, Lichtenstein A I, Katsnelson M I, Withers F, Mishchenko A, Eaves L, Geim A K, Novoselov K S and Misra A 2018 Nat. Electron. 1 344 [14] Gong C and Zhang X 2019 Science 363 eaav4450 [15] Gibertini M, Koperski M, Morpurgo A F and Novoselov K S 2019 Nat. Nanotech. 14 408 [16] Julliere M 1975 Phys. Lett. A. 154 225 [17] Moodera J S, Kinder L R, Wong T M and Meservey R 1995 Phys. Rev. Lett. 74 3273 [18] Diény B 1994 J. Magn. Magn. Mater. 136 335 [19] Zhou G H, Wang Y G and Qi X J 2009 Chin. Phys. Lett. 26 037501 [20] Qi X J, Wang Y G, Miao X F, Li Z Q and Huang Y Z 2010 Chin. Phys. B 19 037505 [21] Hu C, Zhang D, Yan F, Li Y, Lv Q, Zhu W, Wei Z, Chang K and Wang K 2020 Sci. Bull. 65 1072 [22] Entani S, Seki T, Sakuraba Y, Yamamoto T, Takahashi S, Naramoto H, Takanashi K and Sakai S 2016 Appl. Phys. Lett. 109 082406 [23] Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D and Morpurgo A F 2018 Nano Lett. 18 4303 [24] Iqbal M Z, Iqbal M W, Siddique S, Khan M F and Ramay S M 2016 Sci. Rep. 6 1 [25] Wu H, Coileáin C, Abid M, Mauit O, Syrlybekov A, Khalid A, Xu H, Gatensby R, Wang J J, Liu H, Yang L, Duesberg G S, Zhang H, Abid M and Shvets I V 2015 Sci. Rep. 5 15984 [26] Zhao K, Xing Y, Han J, Feng J, Shi W, Zhang B and Zeng Z 2017 J. Magn. Magn. Mater. 432 10 [27] Zatko V, Galbiati M, Dubois S M, Och M, Palczynski P, Mattevi C, Brus P, Bezencenet O, Martin M, Servet B, Charlier J, Godel F, Vecchiola A, Bouzehouane K, Collin S, Petroff F, Dlubak B and Seneor P 2019 ACS Nano 13 14468 [28] Lin H, Yan F, Hu C, Lv Q, Zhu W, Wang Z, Wei Z, Chang K and Wang K 2020 ACS Appl. Mater. & Inter. 12 43921 [29] Chen J, Meng J, Zhou Y, Wu H, Bie Y, Liao Z and Yu D 2013 Nat. Commun. 4 1921 [30] Meng J, Chen J J, Yan Y, Yu D P and Liao Z M 2013 Nanoscale 5 8894 [31] Tan C, Lee J, Jung S, Park T, Albarakati S, Partridge J, Field M R, McCulloch D G, Wang L and Lee C 2018 Nat. Commun. 9 1 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|