Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097505    DOI: 10.1088/1674-1056/ac078b
Special Issue: SPECIAL TOPIC — Two-dimensional magnetic materials and devices
SPECIAL TOPIC—Two-dimensional magnetic materials and devices Prev   Next  

Vertical WS2 spin valve with Ohmic property based on Fe3GeTe2 electrodes

Ce Hu(胡策)1,2, Faguang Yan(闫法光)1, Yucai Li(李予才)1,2, and Kaiyou Wang(王开友)1,2,3,†
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract  The two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have been recently proposed as a promising class of materials for spintronic applications. Here, we report on the all-2D van der Waals (vdW) heterostructure spin valve device comprising of an exfoliated ultra-thin WS2 semiconductor acting as the spacer layer and two exfoliated ferromagnetic Fe3GeTe2 (FGT) metals acting as ferromagnetic electrodes. The metallic interface rather than Schottky barrier is formed despite the semiconducting nature of WS2, which could be originated from the strong interface hybridization. The spin valve effect persists up to the Curie temperature of FGT. Moreover, our metallic spin valve devices exhibit robust spin valve effect where the magnetoresistance magnitude does not vary with the applied bias in the measured range up to 50 μA due to the Ohmic property, which is a highly desirable feature for practical application that requires stable device performance. Our work reveals that WS2-based all-2D magnetic vdW heterostructure, facilitated by combining 2D magnets, is expected to be an attractive candidate for the TMDCs-based spintronic applications.
Keywords:  WS2      Fe3GeTe2      spin valve effect      Ohmic property  
Received:  25 February 2021      Revised:  22 March 2021      Accepted manuscript online:  03 June 2021
PACS:  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  85.75.Bb (Magnetic memory using giant magnetoresistance)  
  72.25.Mk (Spin transport through interfaces)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303400), the National Natural Science Foundation of China (Grant No. 61774144), Beijing Natural Science Foundation Key Program (Grant No. Z190007), and Chinese Academy of Sciences (Grant Nos. QYZDY-SSW-JSC020, XDB44000000, and XDB28000000).
Corresponding Authors:  Kaiyou Wang     E-mail:  kywang@semi.ac.cn

Cite this article: 

Ce Hu(胡策), Faguang Yan(闫法光), Yucai Li(李予才), and Kaiyou Wang(王开友) Vertical WS2 spin valve with Ohmic property based on Fe3GeTe2 electrodes 2021 Chin. Phys. B 30 097505

[1] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotech. 7 699
[2] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[3] Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C 2014 ACS Nano 8 1102
[4] Mak K F and Shan J 2016 Nat. Photon. 10 216
[5] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[6] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344
[7] Wang W, Narayan A, Tang L, Dolui K, Liu Y, Yuan X, Jin Y, Wu Y, Rungger I, Sanvito S and Xiu F 2015 Nano Lett. 15 5261
[8] Lin X, Yang W, Wang K L and Zhao W 2019 Nat. Electron. 2 274
[9] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[10] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
[11] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y, Wu S, Zhu J, Wang J, Chen X and Zhang Y 2018 Nature 563 94
[12] Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M and Batzill M 2018 Nat. Nanotech. 13 289
[13] Ghazaryan D, Greenaway M T, Wang Z, Guarochico-Moreira V H, Vera-Marun I J, Yin J, Liao Y, Morozov S V, Kristanovski O, Lichtenstein A I, Katsnelson M I, Withers F, Mishchenko A, Eaves L, Geim A K, Novoselov K S and Misra A 2018 Nat. Electron. 1 344
[14] Gong C and Zhang X 2019 Science 363 eaav4450
[15] Gibertini M, Koperski M, Morpurgo A F and Novoselov K S 2019 Nat. Nanotech. 14 408
[16] Julliere M 1975 Phys. Lett. A. 154 225
[17] Moodera J S, Kinder L R, Wong T M and Meservey R 1995 Phys. Rev. Lett. 74 3273
[18] Diény B 1994 J. Magn. Magn. Mater. 136 335
[19] Zhou G H, Wang Y G and Qi X J 2009 Chin. Phys. Lett. 26 037501
[20] Qi X J, Wang Y G, Miao X F, Li Z Q and Huang Y Z 2010 Chin. Phys. B 19 037505
[21] Hu C, Zhang D, Yan F, Li Y, Lv Q, Zhu W, Wei Z, Chang K and Wang K 2020 Sci. Bull. 65 1072
[22] Entani S, Seki T, Sakuraba Y, Yamamoto T, Takahashi S, Naramoto H, Takanashi K and Sakai S 2016 Appl. Phys. Lett. 109 082406
[23] Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D and Morpurgo A F 2018 Nano Lett. 18 4303
[24] Iqbal M Z, Iqbal M W, Siddique S, Khan M F and Ramay S M 2016 Sci. Rep. 6 1
[25] Wu H, Coileáin C, Abid M, Mauit O, Syrlybekov A, Khalid A, Xu H, Gatensby R, Wang J J, Liu H, Yang L, Duesberg G S, Zhang H, Abid M and Shvets I V 2015 Sci. Rep. 5 15984
[26] Zhao K, Xing Y, Han J, Feng J, Shi W, Zhang B and Zeng Z 2017 J. Magn. Magn. Mater. 432 10
[27] Zatko V, Galbiati M, Dubois S M, Och M, Palczynski P, Mattevi C, Brus P, Bezencenet O, Martin M, Servet B, Charlier J, Godel F, Vecchiola A, Bouzehouane K, Collin S, Petroff F, Dlubak B and Seneor P 2019 ACS Nano 13 14468
[28] Lin H, Yan F, Hu C, Lv Q, Zhu W, Wang Z, Wei Z, Chang K and Wang K 2020 ACS Appl. Mater. & Inter. 12 43921
[29] Chen J, Meng J, Zhou Y, Wu H, Bie Y, Liao Z and Yu D 2013 Nat. Commun. 4 1921
[30] Meng J, Chen J J, Yan Y, Yu D P and Liao Z M 2013 Nanoscale 5 8894
[31] Tan C, Lee J, Jung S, Park T, Albarakati S, Partridge J, Field M R, McCulloch D G, Wang L and Lee C 2018 Nat. Commun. 9 1
[1] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[2] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[3] Synthesis of flower-like WS2 by chemical vapor deposition
Jin-Zi Ding(丁金姿), Wei Ren(任卫), Ai-Ling Feng(冯爱玲), Yao Wang(王垚), Hao-Sen Qiao(乔浩森), Yu-Xin Jia(贾煜欣), Shuang-Xiong Ma(马双雄), and Bo-Yu Zhang(张博宇). Chin. Phys. B, 2021, 30(12): 126201.
[4] Photoemission oscillation in epitaxially grown van der Waals β-In2Se3/WS2 heterobilayer bubbles
Jiyu Dong(董继宇), Kang Lin(林康), Congpu Mu(牟从普), Zhiyan Jia(贾智研), Jin Xu(徐瑾), Anmin Nie(聂安民), Bochong Wang(王博翀), Jianyong Xiang(向建勇), Fusheng Wen(温福昇), Kun Zhai(翟昆), Tianyu Xue(薛天宇), and Zhongyuan Liu(柳忠元). Chin. Phys. B, 2021, 30(11): 117901.
[5] Label-free tungsten disulfide quantum dots as a fluorescent sensing platform for highly efficient detection of copper (II) ions
Xuan Zhao(赵宣), Da-Wei He(何大伟), Yong-Sheng Wang(王永生), Yin Hu(胡音), Chen Fu(付晨), Xue Li(李雪). Chin. Phys. B, 2017, 26(6): 066102.
[6] Tuning electronic properties of the S2/graphene heterojunction by strains from density functional theory
Jun-Hui Lei(雷军辉), Xiu-Fen Wang(王秀峰), Jian-Guo Lin(林建国). Chin. Phys. B, 2017, 26(12): 127101.
[7] Au and Ti induced charge redistributions on monolayer WS2
Zhu Hui-Li (朱会丽), Yang Wei-Huang (杨伟煌), Wu Ya-Ping (吴雅苹), Lin Wei (林伟), Kang Jun-Yong (康俊勇), Zhou Chang-Jie (周昌杰). Chin. Phys. B, 2015, 24(7): 077301.
No Suggested Reading articles found!