Please wait a minute...
Chinese Physics, 2006, Vol. 15(8): 1690-1694    DOI: 10.1088/1009-1963/15/8/009
GENERAL Prev   Next  

A quantum encryption scheme using d-level systems

Guo Fen-Zhuo(郭奋卓)a)b), Gao Fei(高飞)a), Wen Qiao-Yan(温巧燕)a), and Zhu Fu-Chen(朱甫臣)c)
a School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; b State Key Laboratory of Integrated Services Network, Xidian University, Xi'an 710071, China; c National Laboratory for Modern Communications, P.O. Box 810, Chengdu 610041, China 
Abstract  Using the generalized Bell states and quantum gates, we introduce a quantum encryption scheme of d-level states (qudits). The scheme can detect and correct arbitrary transmission errors using only local operations and classical communications between the communicators. In addition, the entanglement key used to encrypt can be recycled. The protocol is informationally secure, because the output state is a totally mixed one for every input state $\rho$.
Keywords:  quantum encryption      d-level      quantum cryptography      quantum information  
Received:  20 May 2005      Revised:  02 March 2006      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Hk (Quantum communication)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 60373059), the Special Research Fund for the Doctoral Program of Higher Education of China (Grant No 20040013007), the Major Research plan of the National Natural Science Foundation of China(Grant No 90604023), the National Laboratory for Modern Communications Science Foundation of China, the National Key Laboratory on Theory and Chief Technology of Integrated Services Networks (ISN) Open Foundation, and the Graduate Students Innovation Foundation of Beijing University of Posts and Telecommunications.

Cite this article: 

Guo Fen-Zhuo(郭奋卓), Gao Fei(高飞), Wen Qiao-Yan(温巧燕), and Zhu Fu-Chen(朱甫臣) A quantum encryption scheme using d-level systems 2006 Chinese Physics 15 1690

[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states
Xiao-Long Gong(龚小龙), Shuo Cao(曹硕), Yue Fang(方越), and Tong-Hua Liu(刘统华). Chin. Phys. B, 2022, 31(5): 050402.
[3] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[4] Quantum private comparison of arbitrary single qubit states based on swap test
Xi Huang(黄曦), Yan Chang(昌燕), Wen Cheng(程稳), Min Hou(侯敏), and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2022, 31(4): 040303.
[5] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
[6] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[7] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[8] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[9] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[10] Error-detected single-photon quantum routing using a quantum dot and a double-sided microcavity system
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), Shou Zhang(张寿). Chin. Phys. B, 2019, 28(2): 020301.
[11] A method to calculate effective Hamiltonians in quantum information
Jun-Hang Ren(任军航), Ming-Yong Ye(叶明勇), Xiu-Min Lin(林秀敏). Chin. Phys. B, 2019, 28(11): 110305.
[12] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
[13] Quantum information processing with nitrogen-vacancy centers in diamond
Gang-Qin Liu(刘刚钦), Xin-Yu Pan(潘新宇). Chin. Phys. B, 2018, 27(2): 020304.
[14] Entangled-photons generation with quantum dots
Yuan Li(李远), Fei Ding(丁飞), Oliver G Schmidt. Chin. Phys. B, 2018, 27(2): 020307.
[15] Hierarchical and probabilistic quantum information splitting of an arbitrary two-qubit state via two cluster states
Wen-Ming Guo(郭文明), Lei-Ru Qin(秦蕾茹). Chin. Phys. B, 2018, 27(11): 110302.
No Suggested Reading articles found!