Abstract A new representation of an arbitrary and unknown N-particle state is presented at first. As an application, a scheme for teleporting an arbitrary and unknown N-particle state is proposed when N pairs of two-particle non-maximally entangled states are utilized as quantum channels. After Alice (sender) makes Bell-state measurement on her particles, Bob (recipient) introduces an auxiliary particle and carries out appropriate unitary transformation on his particle and the auxiliary particle depending on classical information from Alice. Then, von Neumann measurement that confirms whether the teleportation succeeds or not is performed by Bob on the auxiliary particle. In order to complete the teleportation, another N-1 times operations need to be performed which are similar to the above ones. It can be successfully realized with a certain probability which is determined by the product of the smaller coefficients of non-maximally entangled pairs. All possible unitary transformations are given in detail.
Received: 17 April 2006
Revised: 16 May 2006
Accepted manuscript online:
(Quantum computation architectures and implementations)
Cite this article:
Dong Li(董莉), Xiu Xiao-Ming(修晓明), and Gao Ya-Jun(高亚军) A new representation and probabilistic teleportation of an arbitrary and unknown N -particle state 2006 Chinese Physics 15 2835
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.