Please wait a minute...
Acta Physica Sinica (Overseas Edition), 1994, Vol. 3(10): 769-779    DOI: 10.1088/1004-423X/3/10/007
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

QUANTUM PERCOLATION AND BALLISTIC CONDUCTANCE IN A SYSTEM OF DOUBLE-COUPLED CHAINS

FAN XU-DONG (范旭东)a, GU BEN-YUAN (顾本源)b, YANG GUO-ZHEN (杨国桢)b, LIN ZONG-HAN (林宗涵)c
a Mesoscopic Physics Laboratory, Department of Physics, Peking University, Beijing 100871, China ; b Institute of Physics, Academia Sinica, Beijing 100080, China; c Mesoscopic Physics Laboratory, Departraent of Physics, Peking University, Beijing 100871, China and Institute of Theoretic Physics, Academia Sinica, Beijing 100080, China
Abstract  The quantum-mechanical calculation of electronic conductance in double-coupled chains as a function of the interchain bonding probability p is presented. The calculated results show that one still can see the basic plateaus in the ensemble-averaged conductance curves as a function of the Fermi energy for the weak disorder. In addition, dense irregularly oscillating structures are superimposed upon each plateau. The characteristics of the conductance are very sensitive to the presence of the interchain broken bonds. For the strong disorder (p≈0.5) the conductance quantization breaks down. The accuracy of the quantization conductance rapidly drops down as the value of p approaches 0.5. The ensemble-averaged value of the logarithmic conductance as a function of the sample length exhibits a linear variation, determining a localization length. Both the localization length and the root-mean- square (RMS) value of the conductance fluctuations depend on p and the Fermi energy of electrons. The variations of the localization length and RMS with p are both of an approximate parabolic function around p≈0.5. No percolation transition is found for this quasi-one-dimensional system, as expected.
Received:  16 November 1993      Accepted manuscript online: 
PACS:  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  03.65.-w (Quantum mechanics)  
  73.20.Fz (Weak or Anderson localization)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Natural Science Foundation of China and in part by the Chinese Academy of Sciences under the Grant LWTZ-1298.

Cite this article: 

FAN XU-DONG (范旭东), GU BEN-YUAN (顾本源), YANG GUO-ZHEN (杨国桢), LIN ZONG-HAN (林宗涵) QUANTUM PERCOLATION AND BALLISTIC CONDUCTANCE IN A SYSTEM OF DOUBLE-COUPLED CHAINS 1994 Acta Physica Sinica (Overseas Edition) 3 769

[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[3] Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅). Chin. Phys. B, 2022, 31(11): 117102.
[4] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[5] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[6] Ohmic and Schottky contacts of hydrogenated and oxygenated boron-doped single-crystal diamond with hill-like polycrystalline grains
Jing-Cheng Wang(王旌丞), Hao Chen(陈浩), Lin-Feng Wan(万琳丰), Cao-Yuan Mu(牟草源), Yao-Feng Liu(刘尧峰), Shao-Heng Cheng(成绍恒), Qi-Liang Wang(王启亮), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2021, 30(9): 096803.
[7] TiOx-based self-rectifying memory device for crossbar WORM memory array applications
Li-Ping Fu(傅丽萍), Xiao-Qiang Song(宋小强), Xiao-Ping Gao(高晓平), Ze-Wei Wu(吴泽伟), Si-Kai Chen(陈思凯), and Ying-Tao Li(李颖弢). Chin. Phys. B, 2021, 30(1): 016103.
[8] Low lattice thermal conductivity and high figure of merit in p-type doped K3IO
Weiqiang Wang(王巍强), Zhenhong Dai(戴振宏), Qi Zhong(钟琦), Yinchang Zhao(赵银昌), and Sheng Meng(孟胜). Chin. Phys. B, 2020, 29(12): 126501.
[9] Growth and physical characterization of high resistivityFe: β-Ga2O3 crystals
Hao Zhang(张浩), Hui-Li Tang(唐慧丽), Nuo-Tian He(何诺天), Zhi-Chao Zhu(朱智超), Jia-Wen Chen(陈佳文), Bo Liu(刘波), Jun Xu(徐军). Chin. Phys. B, 2020, 29(8): 087201.
[10] Effects of bismuth on structural and dielectric properties of cobalt-cadmium spinel ferrites fabricated via micro-emulsion route
Furhaj Ahmed Sheikh, Muhammad Khalid, Muhammad Shahzad Shifa, H M Noor ul Huda Khan Asghar, Sameen Aslam, Ayesha Perveen, Jalil ur Rehman, Muhammad Azhar Khan, Zaheer Abbas Gilani. Chin. Phys. B, 2019, 28(8): 088701.
[11] Tunable 2H-TaSe2 room-temperature terahertz photodetector
Jin Wang(王瑾), Cheng Guo(郭程), Wanlong Guo(郭万龙), Lin Wang(王林), Wangzhou Shi(石旺舟), Xiaoshuang Chen(陈效双). Chin. Phys. B, 2019, 28(4): 046802.
[12] Effects of hole-injection through side-walls of large V-pits on efficiency droop in Ⅲ-nitride LEDs
Dong-Yan Zhang(张东炎), Jie Zhang(张洁), Xiao-Feng Liu(刘晓峰), Sha-Sha Chen(陈沙沙), Hui-Wen Li(李慧文), Ming-Qing Liu(刘明庆), Da-Qian Ye(叶大千), Du-Xiang Wang(王笃祥). Chin. Phys. B, 2019, 28(4): 048501.
[13] Transport properties of topological nodal-line semimetal candidate CaAs3 under hydrostatic pressure
Jing Li(李婧), Ling-Xiao Zhao(赵凌霄), Yi-Yan Wang(王义炎), Xin-Min Wang(王欣敏), Chao-Yang Ma(麻朝阳), Wen-Liang Zhu(朱文亮), Mo-Ran Gao(高默然), Shuai Zhang(张帅), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富). Chin. Phys. B, 2019, 28(4): 046202.
[14] Review of gallium oxide based field-effect transistors and Schottky barrier diodes
Zeng Liu(刘增), Pei-Gang Li(李培刚), Yu-Song Zhi(支钰崧), Xiao-Long Wang(王小龙), Xu-Long Chu(褚旭龙), Wei-Hua Tang(唐为华). Chin. Phys. B, 2019, 28(1): 017105.
[15] Electronic structures of impurities and point defects in semiconductors
Yong Zhang(张勇). Chin. Phys. B, 2018, 27(11): 117103.
No Suggested Reading articles found!