CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Growth and physical characterization of high resistivityFe: β-Ga2O3 crystals |
Hao Zhang(张浩)1, Hui-Li Tang(唐慧丽)1, Nuo-Tian He(何诺天)1, Zhi-Chao Zhu(朱智超)2, Jia-Wen Chen(陈佳文)1, Bo Liu(刘波)1, Jun Xu(徐军)1,3 |
1 MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering, Institute for Advanced Study, Tongji University, Shanghai 200092, China;
2 School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China;
3 Shanghai Engineering Research Center for Sapphire Crystals, Shanghai 201899, China |
|
|
Abstract High quality 0.02 mol%, 0.05 mol%, and 0.08 mol% Fe:β-Ga2O3 single crystals were grown by the floating zone method. The crystal structure, optical, electrical, and thermal properties were measured and discussed. Fe:β-Ga2O3 single crystals showed transmittance of higher than 80% in the near infrared region. With the increase of the Fe doping concentration, the optical bandgaps reduced and room temperature resistivity increased. The resistivity of 0.08 mol% Fe:β-Ga2O3 crystal reached to 3.63×1011 Ω·cm. The high resistivity Fe:β-Ga2O3 single crystals could be applied as the substrate for the high-power field effect transistors (FETs).
|
Received: 20 April 2020
Revised: 10 May 2020
Accepted manuscript online:
|
PACS:
|
72.20.-i
|
(Conductivity phenomena in semiconductors and insulators)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
65.40.-b
|
(Thermal properties of crystalline solids)
|
|
Fund: Project supported by the Scientific and Innovative Action Plan of Shanghai, China (Grant No. 18511110502) and Equipment Pre-research Fund Key Project, China (Grant No. 6140922010601). |
Corresponding Authors:
Hui-Li Tang
E-mail: tanghl@tongji.edu.cn
|
Cite this article:
Hao Zhang(张浩), Hui-Li Tang(唐慧丽), Nuo-Tian He(何诺天), Zhi-Chao Zhu(朱智超), Jia-Wen Chen(陈佳文), Bo Liu(刘波), Jun Xu(徐军) Growth and physical characterization of high resistivityFe: β-Ga2O3 crystals 2020 Chin. Phys. B 29 087201
|
[1] |
Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T and Yamakoshi S 2016 Semicond. Sci. Tech. 31 034001
|
[2] |
Oh S, Jung Y, Mastro M A, Hite, J K, Eddy C R and Kim J 2015 Opt. Express 23 28300
|
[3] |
Lu X, Zhou L, Chen L, Ouyang X, Liu B, Xu J and Tang H 2018 Appl. Phys. Lett. 112 103502
|
[4] |
Tippins H H 1965 Phys. Rev. 140 A316
|
[5] |
Stepanov S, Nikolaev V, Bougrov V and Romanov A 2016 Rev. Adv. Mater. Sci. 44 63
|
[6] |
He H, Orlando R, Blanco M A, Pandey R, Amzallag E, Baraille I and Rérat M 2006 Phys. Rev. B 74 195123
|
[7] |
Higashiwaki M, Sasaki K, Kamimura T, Hoi Wong M, Krishnamurthy D, Kuramata A, Masui T and Yamakoshi S 2013 Appl. Phys. Lett. 103 123511
|
[8] |
Yan X, Esqueda I S, Ma J, Tice J and Wang H 2018 Appl. Phys. Lett. 112 032101
|
[9] |
Roy R, Hill V G and Osborn E F 1952 J. Am. Chem. Soc. 74 719
|
[10] |
Galazka Z, Uecker R, Irmscher K, Albrecht M, Klimm D, Pietsch M, Brützam M, Bertram R, Ganschow S and Fornari R 2010 Cryst. Res. Technol. 45 1229
|
[11] |
Víllora E G, Shimamura K, Yoshikawa Y, Aoki K and Ichinose N 2004 J. Cryst. Growth 270 420
|
[12] |
Kuramata A, Koshi K, Watanabe S, Yamaoka Y, Masui T and Yamakoshi S 2016 Jpn. J. Appl. Phys. 55 1202A2
|
[13] |
Zhang Z, Farzana E, Arehart A R and Ringel S A 2016 Appl. Phys. Lett. 108 052105
|
[14] |
Green A J, Chabak K D, Heller E R, Fitch R C, Baldini M, Fiedler A, Irmscher K, Wagner G, Galazka Z, Tetlak S E and Crespo A 2016 IEEE Electr. Device Lett. 37 902
|
[15] |
Wong M H, Sasaki K, Kuramata A, Yamakoshi S and Higashiwaki M 2015 IEEE Electr. Device Lett. 37 212
|
[16] |
Tang H, He N, Zhang H, Liu B, Zhu Z, Xu M, Chen L, Liu J, Ouyang X and Xu J 2020 CrystEngComm 22 924
|
[17] |
Onuma T, Fujioka S, Yamaguchi T, Higashiwaki M, Sasaki K, Masui T and Honda T 2013 Appl. Phys. Lett. 103 041910
|
[18] |
Irmscher K, Galazka Z, Pietsch M, Uecker R and Fornari R 2011 J. Appl. Phys. 110 063720
|
[19] |
Galazka Z, Irmscher K, Uecker R, Bertram R, Pietsch M, Kwasniewski A, Naumann M, Schulz T, Schewski R, Klimm D and Bickermann M 2014 J. Cryst. Growth 404 184
|
[20] |
Suzuki N, Ohira S, Tanaka M, Sugawara T, Nakajima K and Shishido T 2007 Phys. Status Solidi C 4 2310
|
[21] |
Wong M H, Sasaki K, Kuramata A, Yamakoshi S and Higashiwaki M 2015 Appl. Phys. Lett. 106 032105
|
[22] |
Polyakov A Y, Smirnov N B, Shchemerov I V, Pearton S J, Ren F, Chernykh A V and Kochkova A I 2018 Appl. Phys. Lett. 113 142102
|
[23] |
Ingebrigtsen M E, Varley J B, Kuznetsov A Y Svensson B G, Alfieri G, Mihaila A, Badstübner U and Vines L 2018 Appl. Phys. Lett. 112 042104
|
[24] |
Islam M M, Rana D, Hernandez A, Haseman M and Selim F A 2019 J. Appl. Phys. 125 055701
|
[25] |
Neal A T, Mou S, Rafique S, Rafique S, Zhao H, Ahmadi E, Speck J S, Stevens K T, Blevins J D, Thomson D B, Moser N and Chabak K D 2018 Appl. Phys. Lett. 113 062101
|
[26] |
He H, Li W, Xing H Z and Liang E J 2012 Adv. Mater. Res. 535 36
|
[27] |
Ricci F, Boschi F, Baraldi A, Filippetti A, Higashiwaki M, Kuramata A, Fiorentini V, Fornari and R 2016 J. Phys.:Condens. Matter 28 224005
|
[28] |
Hrivnák L 1987 J. Appl. Phys. 62 3228
|
[29] |
Fornari R and Kumar J 1990 Appl. Phys. Lett. 56 638
|
[30] |
Lenyk C A, Gustafson T D, Halliburton L E and Giles N C 2019 J. Appl. Phys. 126 245701
|
[31] |
Santia M D, Tandon N and Albrecht J D 2015 Appl. Phys. Lett. 107 041907
|
[32] |
Guo Z, Verma A, Wu X, Sun F, Hickman A, Masui T, Kuramata A, Higashiwaki M, Jena D and Luo T 2015 Appl. Phys. Lett. 106 111909
|
[33] |
Slomski M, Blumenschein N, Paskov P P, Muth J F and Paskova T 2017 J. Appl. Phys. 121 235104
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|