Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 087201    DOI: 10.1088/1674-1056/ab942d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Growth and physical characterization of high resistivityFe: β-Ga2O3 crystals

Hao Zhang(张浩)1, Hui-Li Tang(唐慧丽)1, Nuo-Tian He(何诺天)1, Zhi-Chao Zhu(朱智超)2, Jia-Wen Chen(陈佳文)1, Bo Liu(刘波)1, Jun Xu(徐军)1,3
1 MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering, Institute for Advanced Study, Tongji University, Shanghai 200092, China;
2 School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China;
3 Shanghai Engineering Research Center for Sapphire Crystals, Shanghai 201899, China
Abstract  

High quality 0.02 mol%, 0.05 mol%, and 0.08 mol% Fe:β-Ga2O3 single crystals were grown by the floating zone method. The crystal structure, optical, electrical, and thermal properties were measured and discussed. Fe:β-Ga2O3 single crystals showed transmittance of higher than 80% in the near infrared region. With the increase of the Fe doping concentration, the optical bandgaps reduced and room temperature resistivity increased. The resistivity of 0.08 mol% Fe:β-Ga2O3 crystal reached to 3.63×1011 Ω·cm. The high resistivity Fe:β-Ga2O3 single crystals could be applied as the substrate for the high-power field effect transistors (FETs).

Keywords:  Fe:β-Ga2O3 crystal      high resistivity      crystal growth  
Received:  20 April 2020      Revised:  10 May 2020      Accepted manuscript online: 
PACS:  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  71.20.Nr (Semiconductor compounds)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  65.40.-b (Thermal properties of crystalline solids)  
Fund: 

Project supported by the Scientific and Innovative Action Plan of Shanghai, China (Grant No. 18511110502) and Equipment Pre-research Fund Key Project, China (Grant No. 6140922010601).

Corresponding Authors:  Hui-Li Tang     E-mail:  tanghl@tongji.edu.cn

Cite this article: 

Hao Zhang(张浩), Hui-Li Tang(唐慧丽), Nuo-Tian He(何诺天), Zhi-Chao Zhu(朱智超), Jia-Wen Chen(陈佳文), Bo Liu(刘波), Jun Xu(徐军) Growth and physical characterization of high resistivityFe: β-Ga2O3 crystals 2020 Chin. Phys. B 29 087201

[1] Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T and Yamakoshi S 2016 Semicond. Sci. Tech. 31 034001
[2] Oh S, Jung Y, Mastro M A, Hite, J K, Eddy C R and Kim J 2015 Opt. Express 23 28300
[3] Lu X, Zhou L, Chen L, Ouyang X, Liu B, Xu J and Tang H 2018 Appl. Phys. Lett. 112 103502
[4] Tippins H H 1965 Phys. Rev. 140 A316
[5] Stepanov S, Nikolaev V, Bougrov V and Romanov A 2016 Rev. Adv. Mater. Sci. 44 63
[6] He H, Orlando R, Blanco M A, Pandey R, Amzallag E, Baraille I and Rérat M 2006 Phys. Rev. B 74 195123
[7] Higashiwaki M, Sasaki K, Kamimura T, Hoi Wong M, Krishnamurthy D, Kuramata A, Masui T and Yamakoshi S 2013 Appl. Phys. Lett. 103 123511
[8] Yan X, Esqueda I S, Ma J, Tice J and Wang H 2018 Appl. Phys. Lett. 112 032101
[9] Roy R, Hill V G and Osborn E F 1952 J. Am. Chem. Soc. 74 719
[10] Galazka Z, Uecker R, Irmscher K, Albrecht M, Klimm D, Pietsch M, Brützam M, Bertram R, Ganschow S and Fornari R 2010 Cryst. Res. Technol. 45 1229
[11] Víllora E G, Shimamura K, Yoshikawa Y, Aoki K and Ichinose N 2004 J. Cryst. Growth 270 420
[12] Kuramata A, Koshi K, Watanabe S, Yamaoka Y, Masui T and Yamakoshi S 2016 Jpn. J. Appl. Phys. 55 1202A2
[13] Zhang Z, Farzana E, Arehart A R and Ringel S A 2016 Appl. Phys. Lett. 108 052105
[14] Green A J, Chabak K D, Heller E R, Fitch R C, Baldini M, Fiedler A, Irmscher K, Wagner G, Galazka Z, Tetlak S E and Crespo A 2016 IEEE Electr. Device Lett. 37 902
[15] Wong M H, Sasaki K, Kuramata A, Yamakoshi S and Higashiwaki M 2015 IEEE Electr. Device Lett. 37 212
[16] Tang H, He N, Zhang H, Liu B, Zhu Z, Xu M, Chen L, Liu J, Ouyang X and Xu J 2020 CrystEngComm 22 924
[17] Onuma T, Fujioka S, Yamaguchi T, Higashiwaki M, Sasaki K, Masui T and Honda T 2013 Appl. Phys. Lett. 103 041910
[18] Irmscher K, Galazka Z, Pietsch M, Uecker R and Fornari R 2011 J. Appl. Phys. 110 063720
[19] Galazka Z, Irmscher K, Uecker R, Bertram R, Pietsch M, Kwasniewski A, Naumann M, Schulz T, Schewski R, Klimm D and Bickermann M 2014 J. Cryst. Growth 404 184
[20] Suzuki N, Ohira S, Tanaka M, Sugawara T, Nakajima K and Shishido T 2007 Phys. Status Solidi C 4 2310
[21] Wong M H, Sasaki K, Kuramata A, Yamakoshi S and Higashiwaki M 2015 Appl. Phys. Lett. 106 032105
[22] Polyakov A Y, Smirnov N B, Shchemerov I V, Pearton S J, Ren F, Chernykh A V and Kochkova A I 2018 Appl. Phys. Lett. 113 142102
[23] Ingebrigtsen M E, Varley J B, Kuznetsov A Y Svensson B G, Alfieri G, Mihaila A, Badstübner U and Vines L 2018 Appl. Phys. Lett. 112 042104
[24] Islam M M, Rana D, Hernandez A, Haseman M and Selim F A 2019 J. Appl. Phys. 125 055701
[25] Neal A T, Mou S, Rafique S, Rafique S, Zhao H, Ahmadi E, Speck J S, Stevens K T, Blevins J D, Thomson D B, Moser N and Chabak K D 2018 Appl. Phys. Lett. 113 062101
[26] He H, Li W, Xing H Z and Liang E J 2012 Adv. Mater. Res. 535 36
[27] Ricci F, Boschi F, Baraldi A, Filippetti A, Higashiwaki M, Kuramata A, Fiorentini V, Fornari and R 2016 J. Phys.:Condens. Matter 28 224005
[28] Hrivnák L 1987 J. Appl. Phys. 62 3228
[29] Fornari R and Kumar J 1990 Appl. Phys. Lett. 56 638
[30] Lenyk C A, Gustafson T D, Halliburton L E and Giles N C 2019 J. Appl. Phys. 126 245701
[31] Santia M D, Tandon N and Albrecht J D 2015 Appl. Phys. Lett. 107 041907
[32] Guo Z, Verma A, Wu X, Sun F, Hickman A, Masui T, Kuramata A, Higashiwaki M, Jena D and Luo T 2015 Appl. Phys. Lett. 106 111909
[33] Slomski M, Blumenschein N, Paskov P P, Muth J F and Paskova T 2017 J. Appl. Phys. 121 235104
[1] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[2] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[3] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[4] Electric and thermal transport properties of topological insulator candidate LiMgBi
Hao OuYang(欧阳豪), Qing-Xin Dong(董庆新), Yi-Fei Huang(黄奕飞), Jun-Sen Xiang(项俊森), Li-Bo Zhang(张黎博), Chen-Sheng Li(李晨圣), Pei-Jie Sun(孙培杰), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2021, 30(12): 127101.
[5] Crystal growth, spectral properties and Judd-Ofelt analysis of Pr: CaF2-YF3
Jie Tian(田杰), Xiao Cao(曹笑), Wudi Wang(王无敌), Jian Liu(刘坚), Jianshu Dong(董建树), Donghua Hu(胡冬华), Qingguo Wang(王庆国), Yanyan Xue(薛艳艳), Xiaodong Xu(徐晓东), and Jun Xu(徐军). Chin. Phys. B, 2021, 30(10): 108101.
[6] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[7] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[8] A low-dimensional crystal growth model on an isotropic and quasi-free sustained substrate
Chenxi Lu(卢晨曦), Senjiang Yu(余森江), Lingwei Li(李领伟), Bo Yang(杨波), Xiangming Tao(陶向明), Gaoxiang Ye(叶高翔). Chin. Phys. B, 2020, 29(3): 038101.
[9] A numerical study on pattern selection in crystal growth by using anisotropic lattice Boltzmann-phase field method
Zhaodong Zhang(张兆栋), Yuting Cao(曹宇婷), Dongke Sun(孙东科), Hui Xing(邢辉), Jincheng Wang(王锦程), Zhonghua Ni(倪中华). Chin. Phys. B, 2020, 29(2): 028103.
[10] Structural and electrical transport properties of Cu-doped Fe1 -xCuxSe single crystals
He Li(李贺), Ming-Wei Ma(马明伟), Shao-Bo Liu(刘少博), Fang Zhou(周放), and Xiao-Li Dong(董晓莉). Chin. Phys. B, 2020, 29(12): 127404.
[11] Transport properties of topological nodal-line semimetal candidate CaAs3 under hydrostatic pressure
Jing Li(李婧), Ling-Xiao Zhao(赵凌霄), Yi-Yan Wang(王义炎), Xin-Min Wang(王欣敏), Chao-Yang Ma(麻朝阳), Wen-Liang Zhu(朱文亮), Mo-Ran Gao(高默然), Shuai Zhang(张帅), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富). Chin. Phys. B, 2019, 28(4): 046202.
[12] Multiple enlarged growth of single crystal diamond by MPCVD with PCD-rimless top surface
Ze-Yang Ren(任泽阳), Jun Liu(刘俊), Kai Su(苏凯), Jin-Feng Zhang(张金风), Jin-Cheng Zhang(张进成), Sheng-Rui Xu(许晟瑞), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(12): 128103.
[13] Structural, vibrational, optical, photoluminescence, thermal, dielectric, and mechanical studies on zinc (tris) thiourea sulfate single crystal: A noticeable effect of organic dye
Mohd Shkir, V Ganesh, S AlFaify, I S Yahia, Mohd Anis. Chin. Phys. B, 2018, 27(5): 054216.
[14] Enhanced thermoelectric properties of p-type polycrystalline SnSe by regulating the anisotropic crystal growth and Sn vacancy
Chengyan Liu(刘呈燕), Lei Miao(苗蕾), Xiaoyang Wang(王潇漾), Shaohai Wu(伍少海), Yanyan Zheng(郑岩岩), Ziyang Deng(邓梓阳), Yulian Chen(陈玉莲), Guiwen Wang(王桂文), Xiaoyuan Zhou(周小元). Chin. Phys. B, 2018, 27(4): 047211.
[15] Linear and nonlinear optical analysis on semiorganic L-proline cadmium chloride single crystal
Mohd Anis, M I Baig, S S Hussaini, M D Shirsat, Mohd Shkir, H A Ghramh. Chin. Phys. B, 2018, 27(4): 047801.
No Suggested Reading articles found!