Special Issue:
SPECIAL TOPIC — Topological semimetals
|
SPECIAL TOPIC—Topological semimetals |
Prev
Next
|
|
|
Transport properties of topological nodal-line semimetal candidate CaAs3 under hydrostatic pressure |
Jing Li(李婧)1,2, Ling-Xiao Zhao(赵凌霄)1, Yi-Yan Wang(王义炎)1, Xin-Min Wang(王欣敏)1,2, Chao-Yang Ma(麻朝阳)1, Wen-Liang Zhu(朱文亮)1,2, Mo-Ran Gao(高默然)1,2, Shuai Zhang(张帅)1, Zhi-An Ren(任治安)1,2,3, Gen-Fu Chen(陈根富)1,2,3 |
1 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 SongShan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract We report the transport properties of the CaAs3 single crystal, which has been predicted to be a candidate for topological nodal-line semimetals. At ambient pressure, CaAs3 exhibits semiconducting behavior with a small gap, while in some crystals containing tiny defects or impurities, a large “hump” in the resistivity is observed around 230 K. By applying hydrostatic pressure, the samples appear to a tendency towards metallic behavior, but not fully metallized up to 2 GPa. Further high pressure studies are needed to explore the topological characteristics for CaAs3.
|
Received: 25 January 2019
Revised: 25 February 2019
Accepted manuscript online:
|
PACS:
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
72.20.-i
|
(Conductivity phenomena in semiconductors and insulators)
|
|
05.30.Rt
|
(Quantum phase transitions)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0401000 and 2016YFA0300604), the National Key Basic Research Program of China (Grant No. 2015CB921303), the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB07020100), and the National Natural Science Foundation of China (Grant No. 11874417). |
Corresponding Authors:
Gen-Fu Chen
E-mail: gfchen@iphy.ac.cn
|
Cite this article:
Jing Li(李婧), Ling-Xiao Zhao(赵凌霄), Yi-Yan Wang(王义炎), Xin-Min Wang(王欣敏), Chao-Yang Ma(麻朝阳), Wen-Liang Zhu(朱文亮), Mo-Ran Gao(高默然), Shuai Zhang(张帅), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富) Transport properties of topological nodal-line semimetal candidate CaAs3 under hydrostatic pressure 2019 Chin. Phys. B 28 046202
|
[1] |
He J B, Chen D, Zhu W L, Zhang S, Zhao L X, Ren Z A and Chen G F 2017 Phys. Rev. B 95 195165
|
[2] |
Weng H M, Dai X and Fang Z 2016 J. Phys.: Condens. Matter 28 303001
|
[3] |
Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004
|
[4] |
Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
|
[5] |
Xu Q N, Yu R, Fang Z, Dai X and Weng H M 2017 Phys. Rev. B 95 045136
|
[6] |
Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J and Ong N P 2015 Science 350 413
|
[7] |
Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y L 2014 Science 343 864
|
[8] |
Liang T, Gibson Q, Ali M N, Liu M H, Cava R J and Ong N P 2015 Nat. Mater. 14 280
|
[9] |
Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X and Chen G F 2015 Phys. Rev. X 5 031023
|
[10] |
Zhang C L, Xu S Y, Belopolski I, Yuan Z J, Lin Z Q, Tong B B, Bian G, Alidoust N, Lee C C, Huang S M, Chang T R, Chang G Q, Hsu C H, Jeng H T, Neupane M, Sanchez D S, Zheng H, Wang J F, Lin H, Zhang C, Lu H Z, Shen S Q, Neupert T, Hasan M Z and Jia S 2016 Nat. Commun. 7 10735
|
[11] |
Soluyanov A A, Gresch D, Wang Z J, Wu Q S, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495
|
[12] |
Cai P L, Hu J, He L P, Pan J, Hong X C, Zhang Z, Zhang J, Wei J, Mao Z Q and Li S Y 2015 Phys. Rev. Lett. 115 057202
|
[13] |
Burkov A A, Hook M D and Balents L 2011 Phys. Rev. B 84 235126
|
[14] |
Weng H M, Liang Y Y, Xu Q N, Yu R, Fang Z, Dai X and Kawazoe Y 2015 Phys. Rev. B 92 045108
|
[15] |
Xiang Z J, Ye G J, Shang C, Lei B, Wang N Z, Yang K S, Liu D Y, Meng F B, Luo X G, Zou L J, Sun Z, Zhang Y and Chen X H 2015 Phys. Rev. Lett. 115 186403
|
[16] |
Li C H, Long Y J, Zhao L X, Shan L, Ren Z A, Zhao J Z, Weng H M, Dai X, Fang Z, Ren C and Chen G F 2017 Phys. Rev. B 95 125417
|
[17] |
Rodin A S, Carvalho A and Castro Neto A H 2014 Phys. Rev. Lett. 112 176801
|
[18] |
Li D A, Jussila H, Karvonen L, Ye G J, Lipsanen H, Chen X H and Sun Z P 2015 Sci. Rep. 5 15899
|
[19] |
Morita A 1986 Appl. Phys. A 39 227
|
[20] |
Takao Y, Asahina H and Morita A 1981 J. Phys. Soc. Jpn. 50 3362
|
[21] |
Asahina H, Shindo K and Morita A 1982 J. Phys. Soc. Jpn. 51 1193
|
[22] |
Bauhofer W, Wittmann M, Gmelin E and van Schnering H G 1982 Physics of Narrow Gap Semiconductors (Berlin Heidelberg: Springer) p. 30
|
[23] |
Bauhofer W, Wittmann M and Vonschnering H G 1981 J. Phys. Chem. Sol. 42 687
|
[24] |
Quan Y, Yin Z P and Pickett W E 2017 Phys. Rev. Lett. 118 176402
|
[25] |
Brice J F, Courtois A, Protas J and Aubry J 1976 J. Sol. St. Chem. 17 393
|
[26] |
Ashcroft N W and Mermin N D 1976 Solid Sate Physics (New York: Holt, Rinehart and Winston)
|
[27] |
Zhao L X, Huang X C, Long Y J, Chen D, Liang H, Yang Z H, Xue M Q, Ren Z A, Weng H M, Fang Z, Dai X and Chen G F 2017 Chin. Phys. Lett. 34 037102
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|