|
Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平)
Chin. Phys. B,
2022, 31 (3):
030307.
DOI: 10.1088/1674-1056/ac40f8
The Loschmidt echo is a useful diagnostic for the perfection of quantum time-reversal process and the sensitivity of quantum evolution to small perturbations. The main challenge for measuring the Loschmidt echo is the time reversal of a quantum evolution. In this work, we demonstrate the measurement of the Loschmidt echo in a superconducting 10-qubit system using Floquet engineering and discuss the imperfection of an initial Bell-state recovery arising from the next-nearest-neighbor (NNN) coupling present in the qubit device. Our results show that the Loschmidt echo is very sensitive to small perturbations during quantum-state evolution, in contrast to the quantities like qubit population that is often considered in the time-reversal experiment. These properties may be employed for the investigation of multiqubit system concerning many-body decoherence and entanglement, etc., especially when devices with reduced or vanishing NNN coupling are used.
|
|