Chin. Phys. B
Citation Search Quick Search

ISSN 1674-1056 (Print)
CN 11-5639/O4
About
   » About CPB
   » Editorial Board
   » SCI IF
   » Staff
   » Contact
Browse CPB
   » In Press
   » Current Issue
   » Earlier Issues
   » View by Fields
   » Top Downloaded
   » Sci Top Cited
Authors
   » Submit an Article
   » Manuscript Tracking
   » Call for Papers
   » Scope
   » Instruction for Authors
   » Copyright Agreement
   » Templates
   » Author FAQs
   » PACS
Referees
   » Review Policy
   » Referee Login
   » Referee FAQs
   » Editor in Chief Login
   » Editor Login
   » Office Login
Links
   »
HighLights

Surface Majorana flat bands in j=3/2 superconductors with singlet-quintet mixing Hot!

Jiabin Yu(于家斌), Chao-Xing Liu(刘朝星)
Chin. Phys. B, 2020, 29 (1): 017402 doi: 10.1088/1674-1056/ab5b89
Full Text: [PDF 1444 KB] (30)
Show Abstract
Recent experiments[Science Advances 4 eaao4513 (2018)] have revealed the evidence of nodal-line superconductivity in half-Heusler superconductors, e.g., YPtBi. Theories have suggested the topological nature of such nodal-line superconductivity and proposed the existence of surface Majorana flat bands on the (111) surface of half-Heusler superconductors. Due to the divergent density of states of the surface Majorana flat bands, the surface order parameter and the surface impurity play essential roles in determining the surface properties. We study the effect of the surface order parameter and the surface impurity on the surface Majorana flat bands of half-Heusler superconductors based on the Luttinger model. To be specific, we consider the topological nodal-line superconducting phase induced by the singlet-quintet pairing mixing, classify all the possible translationally invariant order parameters for the surface states according to irreducible representations of C3v point group, and demonstrate that any energetically favorable order parameter needs to break the time-reversal symmetry. We further discuss the energy splitting in the energy spectrum of surface Majorana flat bands induced by different order parameters and non-magnetic or magnetic impurities. We propose that the splitting in the energy spectrum can serve as the fingerprint of the pairing symmetry and mean-field order parameters. Our theoretical prediction can be examined in the future scanning tunneling microscopy experiments.

Giant topological Hall effect of ferromagnetic kagome metal Fe3Sn2 Hot!

Qi Wang(王琦), Qiangwei Yin(殷蔷薇), Hechang Lei(雷和畅)
Chin. Phys. B, 2020, 29 (1): 017101 doi: 10.1088/1674-1056/ab5fbc
Full Text: [PDF 671 KB] (41)
Show Abstract
We present the experiment observation of a giant topological Hall effect (THE) in a frustrated kagome bilayer magnet Fe3Sn2. The negative topologically Hall resistivity appears when the field is below 1.3 T and it increases with increasing temperature up to 300 K. Its maximum absolute value reaches ~2.01 μΩ·cm at 300 K and 0.76 T. The origins of the observed giant THE can be attributed to the coexistence of the field-induced skyrmion state and the non-collinear spin configuration, possibly related to the magnetic frustration interaction in Fe3Sn2.

Benchmarking PBE+D3 and SCAN+rVV10 methods using potential energy surfaces generated with MP2+ ΔCCSD(T) calculation Hot!

Jie Chen(陈劼), Weiyu Xie(谢炜宇), Kaihang Li(李开航), Shengbai Zhang(张绳百), Yi-Yang Sun(孙宜阳)
Chin. Phys. B, 2020, 29 (1): 013102 doi: 10.1088/1674-1056/ab5fbb
Full Text: [PDF 714 KB] (23)
Show Abstract
We develop a benchmark system for van der Waals interactions obtained with MP2+ΔCCSD(T) method at complete basis set limit. With this benchmark, we examine the widely used PBE+D3 method and recently developed SCAN+rVV10 method for density functional theory calculations. Our benchmark is based on two molecules:glycine (or Gly, an amino acid) and uracil (or U, an RNA base). We consider six dimer configurations of the two monomers and their potential energy surfaces as a function of relative distance and rotation angle. The Gly-Gly, Gly-U, and U-U pairs represent London dispersion, hydrogen bonding, and π-π stacking interactions, respectively. Our results show that both PBE+D3 and SCAN+rVV10 methods can yield accuracy better than 1 kcal/mol, except for the cases when the distance between the two monomers is significantly smaller than the equilibrium distance. In such a case, neither of these methods can yield uniformly accurate results for all the configurations. In addition, it is found that the SCAN and SCAN+rVV10 methods can reproduce some subtle features in a rotational potential energy curve, while the PBE, PBE+D3, and the local density approximation fail.

Quantum intelligence on protein folding pathways Hot!

Wen-Wen Mao(毛雯雯), Li-Hua Lv(吕丽花), Yong-Yun Ji(季永运), You-Quan Li(李有泉)
Chin. Phys. B, 2020, 29 (1): 018702 doi: 10.1088/1674-1056/ab5fbe
Full Text: [PDF 1526 KB] (13)
Show Abstract
We study the protein folding problem on the base of our quantum approach by considering the model of protein chain with nine amino-acid residues. We introduce the concept of distance space and its projections on a XY-plane, and two characteristic quantities, one is called compactness of protein structure and another is called probability ratio involving shortest path. The concept of shortest path enables us to reduce the 388×388 density matrix to a 2×2 one from which the von Neumann entropy reflecting certain quantum coherence feature is naturally defined. We observe the time evolution of average distance and compactness solved from the classical random walk and quantum walk, we also compare the features of the time-dependence of Shannon entropy and von Neumann entropy. All the results not only reveal the fast quantum folding time but also unveil the existence of quantum intelligence hidden behind in choosing protein folding pathways.

Visualization of tunnel magnetoresistance effect in single manganite nanowires Hot!

Yang Yu(郁扬), Wenjie Hu(胡雯婕), Qiang Li(李强), Qian Shi(时倩), Yinyan Zhu(朱银燕), Hanxuan Lin(林汉轩), Tian Miao(苗田), Yu Bai(白羽), Yanmei Wang(王艳梅), Wenting Yang(杨文婷), Wenbin Wang(王文彬), Hangwen Guo(郭杭闻), Lifeng Yin(殷立峰), Jian Shen(沈健)
Chin. Phys. B, 2020, 29 (1): 018501 doi: 10.1088/1674-1056/ab5932
Full Text: [PDF 675 KB] (26)
Show Abstract
We reported a study of tunnel magnetoresistance (TMR) effect in single manganite nanowire via the combination of magnetotransport and magnetic force microscopy imaging. TMR value up to 290% has been observed in single (La1-yPry)1-xCaxMnO3 nanowires with varying width. We find that the TMR effect can be explained in the scenario of opening and blockade of conducting channels from inherent magnetic domain evolutions. Our findings provide a new route to fabricate TMR junctions and point towards future improvements in complex oxide-based TMR spintronics.

Epitaxial growth and air-stability of monolayer Cu2Te Hot!

K Qian(钱凯), L Gao(高蕾), H Li(李航), S Zhang(张帅), J H Yan(严佳浩), C Liu(刘晨), J O Wang(王嘉鸥), T Qian(钱天), H Ding(丁洪), Y Y Zhang(张余洋), X Lin(林晓), S X Du(杜世萱), H-J Gao(高鸿钧)
Chin. Phys. B, 2020, 29 (1): 018104 doi: 10.1088/1674-1056/ab5781
Full Text: [PDF 1491 KB] (46)
Show Abstract
A new two-dimensional atomic crystal, monolayer cuprous telluride (Cu2Te) has been fabricated on a graphene-SiC(0001) substrate by molecular beam epitaxy (MBE). The low-energy electron diffraction (LEED) characterization shows that the monolayer Cu2Te forms a √3×√3 superstructure with respect to the graphene substrate. The atomic structure of the monolayer Cu2Te is investigated through a combination of scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations. The stoichiometry of the Cu2Te sample is verified by x-ray photoelectron spectroscopy (XPS) measurement. The angle-resolved photoemission spectroscopy (ARPES) data present the electronic band structure of the sample, which is in good agreement with the calculated results. Furthermore, air-exposure experiments reveal the chemical stability of the monolayer Cu2Te. The fabrication of this new 2D material with a particular structure may bring new physical properties for future applications.

A novel particle tracking velocimetry method for complex granular flow field Hot!

Bi-De Wang(王必得), Jian Song(宋健), Ran Li(李然), Ren Han(韩韧), Gang Zheng(郑刚), Hui Yang(杨晖)
Chin. Phys. B, 2020, 29 (1): 014207 doi: 10.1088/1674-1056/ab5936
Full Text: [PDF 4750 KB] (27)
Show Abstract
Particle tracking velocimetry (PTV) is one of the most commonly applied granular flow velocity measurement methods. However, traditional PTV methods may have issues such as high mismatching rates and a narrow measurement range when measuring granular flows with large bulk density and high-speed contrast. In this study, a novel PTV method is introduced to solve these problems using an optical flow matching algorithm with two further processing steps. The first step involves displacement correction, which is used to solve the mismatching problem in the case of high stacking density. The other step is trajectory splicing, which is used to solve the problem of a measurement range reduction in the case of high-speed contrast The hopper flow experimental results demonstrate superior performance of this proposed method in controlling the number of mismatched particles and better measuring efficiency in comparison with the traditional PTV method.

Improved performance of back-gate MoS2 transistors by NH3-plasma treating high-k gate dielectrics Hot!

Jian-Ying Chen(陈建颖), Xin-Yuan Zhao(赵心愿), Lu Liu(刘璐), Jing-Ping Xu(徐静平)
Chin. Phys. B, 2019, 28 (12): 128101 doi: 10.1088/1674-1056/ab50fe
Full Text: [PDF 1778 KB] (70) RICH HTML
Show Abstract
NH3-plasma treatment is used to improve the quality of the gate dielectric and interface. Al2O3 is adopted as a buffer layer between HfO2 and MoS2 to decrease the interface-state density. Four groups of MOS capacitors and back-gate transistors with different gate dielectrics are fabricated and their C-V and I-V characteristics are compared. It is found that the Al2O3/HfO2 back-gate transistor with NH3-plasma treatment shows the best electrical performance:high on-off current ratio of 1.53×107, higher field-effect mobility of 26.51 cm2/V…, and lower subthreshold swing of 145 mV/dec. These are attributed to the improvements of the gate dielectric and interface qualities by the NH3-plasma treatment and the addition of Al2O3 as a buffer layer.

Coulomb-dominated oscillations in a graphene quantum Hall Fabry-Pérot interferometer Hot!

Guan-Qun Zhang(张冠群), Li Lin(林立), Hailin Peng(彭海琳), Zhongfan Liu(刘忠范), Ning Kang(康宁), Hong-Qi Xu(徐洪起)
Chin. Phys. B, 2019, 28 (12): 127203 doi: 10.1088/1674-1056/ab55d3
Full Text: [PDF 2132 KB] (110) RICH HTML
Show Abstract

The electronic Fabry-Pérot interferometer operating in the quantum Hall regime may be a promising tool for probing edge state interferences and studying the non-Abelian statistics of fractionally charged quasiparticles. Here we report on realizing a quantum Hall Fabry-Pérot interferometer based on monolayer graphene. We observe resistance oscillations as a function of perpendicular magnetic field and gate voltage both on the electron and hole sides. Their Coulomb-dominated origin is revealed by the positive (negative) slope of the constant phase lines in the plane of magnetic field and gate voltage on the electron (hole) side. Our work demonstrates that the graphene interferometer is feasible and paves the way for the studies of edge state interferences since high-Landau-level and even denominator fractional quantum Hall states have been found in graphene.

Optimal phase estimation with photon-number difference measurement using twin-Fock states of light Hot!

J H Xu(徐佳慧), J Z Wang(王建中), A X Chen(陈爱喜), Y Li(李勇), G R Jin(金光日)
Chin. Phys. B, 2019, 28 (12): 120303 doi: 10.1088/1674-1056/ab4e7f
Full Text: [PDF 720 KB] (82) RICH HTML
Show Abstract
Quantum phase measurement with multiphoton twin-Fock states has been shown to be optimal for detecting equal numbers of photons at the output ports of a Mach-Zehnder interferometer (i.e., the so-called single-fringe detection), since the phase sensitivity can saturate the quantum Cramér-Rao lower bound at certain values of phase shift. Here we report a further step to achieve a global phase estimation at the Heisenberg limit by detecting the particle-number difference (i.e., the Ĵz measurement). We show the role of experimental imperfections on the ultimate estimation precision with the six-photon twin-Fock state of light. Our results show that both the precision and the sensing region of the Ĵz measurement are better than those of the single-fringe detection, due to combined contributions of the measurement outcomes. We numerically simulate the phase estimation protocol using an asymptotically unbiased maximum likelihood estimator.

High performance silicon-based GeSn p-i-n photodetectors for short-wave infrared application Hot!

Yue Zhao(赵越), Nan Wang(王楠), Kai Yu(余凯), Xiaoming Zhang(张晓明), Xiuli Li(李秀丽), Jun Zheng(郑军), Chunlai Xue(薛春来), Buwen Cheng(成步文), Chuanbo Li(李传波)
Chin. Phys. B, 2019, 28 (12): 128501 doi: 10.1088/1674-1056/ab4e84
Full Text: [PDF 774 KB] (58) RICH HTML
Show Abstract
An investigation of germanium-tin (GeSn) on silicon p-i-n photodetectors with a high-quality Ge0.94Sn0.06 absorbing layer is reported. The GeSn photodetector reached a responsivity as high as 0.45 A/W at the wavelength of 1550 nm and 0.12 A/W at the wavelength of 2 μm. A cycle annealing technology was applied to improve the quality of the epitaxial layer during the growth process by molecular beam epitaxy. A low dark-current density under 1 V reverse bias about 0.078 A/cm2 was achieved at room temperature. Furthermore, the GeSn photodetector could detect a wide spectrum region and the cutoff wavelength reached to about 2.3 μm. This work has great importance in silicon-based short-wave infrared detection.

Different behavior of upper critical field in Fe1-xSe single crystals Hot!

Shunli Ni(倪顺利), Wei Hu(胡卫), Peipei Shen(沈沛沛), Zhongxu Wei(魏忠旭), Shaobo Liu(刘少博), Dong Li(李栋), Jie Yuan(袁洁), Li Yu(俞理), Kui Jin(金魁), Fang Zhou(周放), Xiaoli Dong(董晓莉), Zhongxian Zhao(赵忠贤)
Chin. Phys. B, 2019, 28 (12): 127401 doi: 10.1088/1674-1056/ab50b4
Full Text: [PDF 884 KB] (112) RICH HTML
Show Abstract
The temperature dependences of upper critical field (Hc2) for a series of iron-deficient Fe1-xSe single crystals are obtained from the measurements of in-plane resistivity in magnetic fields up to 9 T and perpendicular to the ab plane. For the samples with lower superconducting transition temperature Tc (<7.2 K), the temperature dependence of Hc2 is appropriately described by an effective two-band model. For the samples with higher Tc (≥7.2 K), the temperature dependence can also be fitted by a single-band Werthamer-Helfand-Hohenberg formula, besides the two-band model. Such a Tc-dependent change in Hc2(T) behavior is discussed in connection with recent related experimental results, showing an inherent link between the changes of intrinsic superconducting and normal state properties in the FeSe system.

Giant enhancement of superconductivity in few layers MoTe2 Hot!

Yuan Gan(甘远)1,2, Chang-Woo Cho2, Alei Li(李阿蕾)2, Jian Lyu(吕坚)2, Xu Du(杜序)3, Jin-Sheng Wen(温锦生)1, Li-Yuan Zhang(张立源)2
Chin. Phys. B, 2019, 28 (11): 117401 doi: 10.1088/1674-1056/ab457f
Full Text: [PDF 908 KB] (102) RICH HTML
Show Abstract

Recently, the layered transition metal dichalcogenide 1T' MoTe2 has attracted considerable attention due to its non-saturating magnetoresistance, type-II Weyl semimetal properties, superconductivity, and potential candidate for two-dimensional (2D) topological insulator in the single-and few-layer limit. Here in this work, we perform systematic transport measurements on thin flakes of MoTe2 prepared by mechanical exfoliation. We find that MoTe2 flakes are superconducting and have an onset superconducting transition temperature Tc up to 5.3 K, which significantly exceeds that of its bulk counterpart. The in-plane upper critical field (Hc2||) is much higher than the Pauli paramagnetic limit, implying that the MoTe2 flakes have Zeeman-protected Ising superconductivity. Furthermore, the Tc and Hc2 can be tuned by up to 320 mK and 400 mT by applying a gate voltage. Our result indicates that MoTe2 flake is a good candidate for studying exotic superconductivity with nontrivial topological properties.

Plasmon reflection reveals local electronic properties of natural graphene wrinkles Hot!

Runkun Chen(陈闰堃)1, Cui Yang(杨翠)1, Yuping Jia(贾玉萍)2,3, Liwei Guo(郭丽伟)4,5,6, Jianing Chen(陈佳宁)1,6
Chin. Phys. B, 2019, 28 (11): 117302 doi: 10.1088/1674-1056/ab46a2
Full Text: [PDF 6231 KB] (88) RICH HTML
Show Abstract

We systematically studied surface plasmons reflection by graphene wrinkles with different heights on SiC substrate. Combined with numerical simulation, we found that the geometry corrugation of a few nanometer height wrinkle alone does not causes a reflection of graphene plasmons. Instead, the separated wrinkle from substrate exhibits a nonlinear spatial Fermi energy distribution along the wrinkle, which acts as a heterojunction. Therefor a higher graphene wrinkle induces a stronger damped region when propagating graphene surface plasmons encounter the wrinkle and get reflected.

Disorder induced phase transition in magnetic higher-order topological insulator: A machine learning study Hot!

Zixian Su(苏子贤)1, Yanzhuo Kang(康艳卓)2, Bofeng Zhang(张博峰)1, Zhiqiang Zhang(张智强)1, Hua Jiang(江华)1,3
Chin. Phys. B, 2019, 28 (11): 117301 doi: 10.1088/1674-1056/ab4582
Full Text: [PDF 2314 KB] (38) RICH HTML
Show Abstract
Previous studies presented the phase diagram induced by the disorder existing separately either in the higher-order topological states or in the topological trivial states, respectively. However, the influence of disorder on the system with the coexistence of the higher-order topological states and other traditional topological states has not been investigated. In this paper, we investigate the disorder induced phase transition in the magnetic higher-order topological insulator. By using the convolutional neural network and non-commutative geometry methods, two independent phase diagrams are calculated. With the comparison between these two diagrams, a topological transition from the normal insulator to the Chern insulator is confirmed. Furthermore, the network based on eigenstate wavefunction studies also presents a transition between the higher-order topological insulator and the Chern insulator.

Atom-pair tunneling and quantum phase transition in asymmetry double-well trap in strong-interaction regime Hot!

Ji-Li Liu(刘吉利)1, Jiu-Qing Liang(梁九卿)2
Chin. Phys. B, 2019, 28 (11): 110304 doi: 10.1088/1674-1056/ab44b6
Full Text: [PDF 487 KB] (77) RICH HTML
Show Abstract

The quantum effect of nonlinear co-tunnelling process, which is dependent on atom-pair tunneling and asymmetry of an double-well trap, is studied by using an asymmetrical extended Bose-Hubbard model. Due to the existence of atom-pair tunneling that describes quantum phenomena of ultracold atom-gas clouds in an asymmetrical double-well trap, the asymmetrical extended Bose-Hubbard model is better than the previous Bose-Hubbard model model by comparing with the experimental data cited from the literature. The dependence of dynamics and quantum phase transition on atom-pair tunneling and asymmetry are investigated. Importantly, it shows that the asymmetry of the extended Bose-Hubbard model, corresponding to the bias between double wells, leads to a number of resonance tunneling processes, which tunneling is renamed conditional resonance tunneling, and corrects the atom-number parity effect by controlling the bias between double wells.

Influence of matrigel on the shape and dynamics of cancer cells Hot!

Teng Ye(叶腾), Feng Qiu(邱峰)
Chin. Phys. B, 2019, 28 (10): 108704 doi: 10.1088/1674-1056/ab4275
Full Text: [PDF 1190 KB] (55) RICH HTML
Show Abstract

The interaction between extracellular matrices and cancer cells plays an important role in regulating cancer cell behaviors. In this article, we use matrigel to mimic extracellular matrices and investigate experimentally how matrigel influences the shape and dynamics of breast cancer cells (MDA-MB-231-GFP cells). We find that matrigel facilitates cancer cells' migration and shape deformation. The influences of the matrigel concentration are also reported.

Robust two-gap strong coupling superconductivity associated with low-lying phonon modes in pressurized Nb5Ir3O superconductors Hot!

Bosen Wang(王铂森), Yaoqing Zhang(张尧卿), Shuxiang Xu(徐淑香), Kento Ishigaki, Kazuyuki Matsubayashi, Jin-Guang Cheng(程金光), Hideo Hosono, Yoshiya Uwatoko
Chin. Phys. B, 2019, 28 (10): 107401 doi: 10.1088/1674-1056/ab4047
Full Text: [PDF 3284 KB] (60) RICH HTML
Show Abstract

We report robust superconducting state and gap symmetry of Nb5Ir3O via electrical transport and specific heat measurements. The analysis of specific heat manifests that Nb5Ir3O is a strongly coupled superconductor with ΔC/γnTc~1.91 and double s-wave superconducting gaps of 2L(0)/kBTc~6.56 and 2S(0)/kBTc~2.36 accounting for 90% and 10%, respectively. The (Cp-γnT)/T3 vs. T plot shows a broad peak at~23 K, indicating phonon softening and the appearance of low-lying phonon mode associated with the interstitial oxygen. This behavior explains the monotonic increase of Tc in Nb5Ir3O(1-δ) by strengthening the electron-phonon coupling and enlarging the density of states at Fermi level. The Hall coefficient is temperature independent below 200 K, and changes its sign from positive to negative above 250 K, suggesting that carrier is across the hole- to electron-dominant regions and the multi-band electronic structures. On warming, the resistivity shows a gradual crossover from T2- to T3-dependence at a critical temperature T*, and a broad peak at a temperature Tp. The reduced Tc under pressure is linearly correlated with lattice parameters c/a ratio and Tp, suggesting the important phonon contributions in Nb5Ir3O as a phonon-medicated superconductor. Possible physical mechanisms are proposed.

Electronic structure of molecular beam epitaxy grown 1T'-MoTe2 film and strain effect Hot!

Xue Zhou(周雪), Zeyu Jiang(姜泽禹), Kenan Zhang(张柯楠), Wei Yao(姚维), Mingzhe Yan(颜明哲), Hongyun Zhang(张红云), Wenhui Duan(段文晖), Shuyun Zhou(周树云)
Chin. Phys. B, 2019, 28 (10): 107307 doi: 10.1088/1674-1056/ab43ba
Full Text: [PDF 1919 KB] (79) RICH HTML
Show Abstract

Atomically thin transition metal dichalcogenide films with distorted trigonal (1T') phase have been predicted to be candidates for realizing quantum spin Hall effect. Growth of 1T' film and experimental investigation of its electronic structure are critical. Here we report the electronic structure of 1T'-MoTe2 films grown by molecular beam epitaxy (MBE). Growth of the 1T'-MoTe2 film depends critically on the substrate temperature, and successful growth of the film is indicated by streaky stripes in the reflection high energy electron diffraction (RHEED) and sharp diffraction spots in the low energy electron diffraction (LEED). Angle-resolved photoemission spectroscopy (ARPES) measurements reveal a metallic behavior in the as-grown film with an overlap between the conduction and valence bands. First principles calculation suggests that a suitable tensile strain along the a-axis direction is needed to induce a gap to make it an insulator. Our work not only reports the electronic structure of MBE grown 1T'-MoTe2 films, but also provides insights for strain engineering to make it possible for quantum spin Hall effect.

Structural and electronic properties of transition-metal chalcogenides Mo5S4 nanowires Hot!

Ming-Shuai Qiu(邱明帅), Huai-Hong Guo(郭怀红), Ye Zhang(张也), Bao-Juan Dong(董宝娟), Sajjad Ali(阿里.萨贾德), Teng Yang(杨腾)
Chin. Phys. B, 2019, 28 (10): 106103 doi: 10.1088/1674-1056/ab3f9a
Full Text: [PDF 3987 KB] (47) RICH HTML
Show Abstract

Transition-metal chalcogenide nanowires (TMCN) as a viable candidate for nanoscale applications have been attracting much attention for the last few decades. Starting from the rigid building block of M6 octahedra (M=transition metal), depending on the way of connection between M6 and decoration by chalcogenide atoms, multiple types of extended TMCN nanowires can be constructed based on some basic rules of backbone construction proposed here. Note that the well-known Chevrel-phase based M6X6 and M6X9 (X=chalcogenide atom) nanowires, which are among our proposed structures, have been successfully synthesized by experiment and well studied. More interestingly, based on the construction principles, we predict three new structural phases (the cap, edge, and C&E phases) of Mo5S4, one of which (the edge phase) has been obtained by top-down electron beam lithography on two-dimensional MoS2, and the C&E phase is yet to be synthesized but appears more stable than the edge phase. The stability of the new phases of Mo5S4 is further substantiated by crystal orbital overlapping population (COOP), phonon dispersion relation, and thermodynamic calculation. The barrier of the structural transition between different phases of Mo5S4 shows that it is very likely to realize an conversion from the experimentally achieved structure to the most stable C&E phase. The calculated electronic structure shows an interesting band nesting between valence and conduction bands of the C&E Mo5S4 phase, suggesting that such a nanowire structure can be well suitable for optoelectronic sensor applications.

Page 1 of 22 421 records
Copyright © the Chinese Physical Society
Address: Institute of Physics, Chinese Academy of Sciences, P. O. Box 603,Beijing 100190 China(100190)
Tel: 010-82649026   Fax: 010-82649027   E-Mail: cpb@aphy.iphy.ac.cn
Supported by Beijing Magtech Co. Ltd. Tel: 86-010-62662699 E-mail: support@magtech.com.cn