Chin. Phys. B
Citation Search Quick Search

ISSN 1674-1056 (Print)
CN 11-5639/O4
About
   » About CPB
   » Editorial Board
   » SCI IF
   » Staff
   » Contact
Browse CPB
   » In Press
   » Current Issue
   » Earlier Issues
   » View by Fields
   » Top Downloaded
   » Sci Top Cited
Authors
   » Submit an Article
   » Manuscript Tracking
   » Call for Papers
   » Scope
   » Instruction for Authors
   » Copyright Agreement
   » Templates
   » Author FAQs
   » PACS
Referees
   » Review Policy
   » Referee Login
   » Referee FAQs
   » Editor in Chief Login
   » Editor Login
   » Office Login
Links
   »
HighLights

A single-crystal neutron diffraction study on magnetic structure of CsCo2Se2 Hot!

Juanjuan Liu(刘娟娟), Jieming Sheng(盛洁明), Wei Luo(罗伟), Jinchen Wang(汪晋辰), Wei Bao(鲍威), Jinhu Yang(杨金虎), Minghu Fang(方明虎), S A Danilkin
Chin. Phys. B, 2018, 27 (11): 117401 doi: 10.1088/1674-1056/27/11/117401
Full Text: [PDF 1145 KB] (31)
Show Abstract

The magnetic structure of CsCo2Se2 was investigated using single-crystal neutron diffraction technique. An antiferromagnetic transition with the propagation vector (0,0,1) was observed at TN=78 K. The Co magnetic moment 0.772(6) μB at 10 K pointing in the basal plane couples ferromagnetically in the plane, which stacks antiferromagnetically along the c direction. Tuning and suppressing the interplane antiferromagnetic interaction may be crucial to induce a superconducting state in the material.

High capacity sodium-rich layered oxide cathode for sodium-ion batteries Hot!

Gen-Cai Guo(郭根材), Changhao Wang(王长昊), Bang-Ming Ming(明帮铭), Si-Wei Luo(罗斯玮), Heng Su(苏恒), Bo-Ya Wang(王博亚), Ming Zhang(张铭), Hai-Jun Yu(尉海军), Ru-Zhi Wang(王如志)
Chin. Phys. B, 2018, 27 (11): 118801 doi: 10.1088/1674-1056/27/11/118801
Full Text: [PDF 1621 KB] (21)
Show Abstract

Sodium-ion batteries have attracted significant recent attention currently considering the limited available lithium resource. However, the energy density of sodium-ion batteries is still insufficient compared to lithium-ion batteries, mainly because of the unavailability of high-energy cathode materials. In this work, a novel sodium-rich layered oxide material (Na2MnO3) is reported with a dynamical stability similar to that of the Li2MnO3 structure and a high capacity of 269.69 mA·h·g1, based on first-principles calculations. Sodium ion de-intercalation and anionic reaction processes are systematically investigated, in association with sodium ions migration phenomenon and structure stability during cycling of NaxMnO3 (1 ≤ x ≤ 2). In addition, the charge compensation during the initial charging process is mainly contributed by oxygen, where the small differences of the energy barriers of the paths 2c→4h, 4h→2c, 4h→4h, 2c→2b, and 4h→2b indicate the reversible sodium ion occupancy in transitional metal and sodium layers. Moreover, the slow decrease of the elastic constants is a clear indication of the high cycle stability. These results provide a framework to exploit the potential of sodium-rich layered oxide, which may facilitate the development of high-performance electrode materials for sodium-ion batteries.

Formation and stability of ultrasonic generated bulk nanobubbles Hot!

Chen-Ran Mo(莫宸冉), Jing Wang(王菁), Zhou Fang(方舟), Li-Min Zhou(周利民), Li-Juan Zhang(张立娟), Jun Hu(胡钧)
Chin. Phys. B, 2018, 27 (11): 118104 doi: 10.1088/1674-1056/27/11/118104
Full Text: [PDF 1321 KB] (29)
Show Abstract

Although various and unique properties of bulk nanobubbles have drawn researchers' attention over the last few years, their formation and stabilization mechanism has remained unsolved. In this paper, we use ultrasonic methods to produce bulk nanobubbles in the pure water and give a comprehensive study on the bulk nanobubbles properties and generation. The ultrasonic wave gives rise to constant oscillation in water where positive and negative pressure appears alternately. With the induced cavitation and presence of dissolved air, the bulk nanobubbles formed. “Nanosight” (which is a special instrument that combines dynamic light scattering with nanoparticle tracking analysis) was used to analyze the track and concentration of nanobubbles. Our results show that in our experiment, sufficient bulk nanobubbles were generated and we have proven they are not contaminations. We also found nanobubbles in the ultrasonic water change in both size and concentration with ultrasonic time.

Antiferromagnetic–ferromagnetic transition in zigzag graphene nanoribbons induced by substitutional doping Hot!

Shenyuan Yang(杨身园), Jing Li(李静), Shu-Shen Li(李树深)
Chin. Phys. B, 2018, 27 (11): 117102 doi: 10.1088/1674-1056/27/11/117102
Full Text: [PDF 2057 KB] (29)
Show Abstract

Using first-principles calculations based on density functional theory, we show that the ground state of zigzag-edged graphene nanoribbons (ZGNRs) can be transformed from antiferromagnetic (AFM) order to ferromagnetic (FM) order by changing the substitutional sites of N or B dopants. This AFM-FM transition induced by substitutional sites is found to be a consequence of the competition between the edge and bulk states. The energy sequence of the edge and bulk states near the Fermi level is reversed in the AFM and FM configurations. When the dopant is substituted near the edge of the ribbon, the extra charge from the dopant is energetically favorable to occupy the edge states in AFM configuration. When the dopant is substituted near the center, the extra charge is energetically favorable to occupy the bulk states in FM configuration. Proper substrate with weak interaction is necessary to maintain the magnetic properties of the doped ZGNRs. Our study can serve as a guide to synthesize graphene nanostructures with stable FM order for future applications to spintronic devices.

Charge compensation and capacity fading in LiCoO2 at high voltage investigated by soft x-ray absorption spectroscopy Hot!

Xing-Hui Long(龙兴辉), Yan-Ru Wu(吴颜如), Nian Zhang(张念), Peng-Fei Yu(于鹏飞), Xue-Fei Feng(冯雪飞), Shun Zheng(郑顺), Jia-Min Fu(傅佳敏), Xiao-Song Liu(刘啸嵩), Na Liu(柳娜), Meng Wang(王梦), Lei-Min Xu(徐磊敏), Jin-Ming Chen(陈锦明), Jenn-Min Lee(李振民)
Chin. Phys. B, 2018, 27 (10): 107802 doi: 10.1088/1674-1056/27/10/107802
Full Text: [PDF 1328 KB] (44) RICH HTML
Show Abstract

In order to obtain an in-depth insight into the mechanism of charge compensation and capacity fading in LiCoO2, the evolution of electronic structure of LiCoO2 at different cutoff voltages and after different cycles are studied by soft x-ray absorption spectroscopy in total electron (TEY) and fluorescence (TFY) detection modes, which provide surface and bulk information, respectively. The spectra of Co L2,3-edge indicate that Co contributes to charge compensation below 4.4 V. Combining with the spectra of O K-edge, it manifests that only O contributes to electron compensation above 4.4 V with the formation of local O 2p holes both on the surface and in the bulk, where the surficial O evolves more remarkably. The evolution of the O 2p holes gives an explanation to the origin of O2- or even O2. A comparison between the TEY and TFY of O K-edge spectra of LiCoO2 cycled in a range from 3 V to 4.6 V indicates both the structural change in the bulk and aggregation of lithium salts on the electrode surface are responsible for the capacity fading. However, the latter is found to play a more important role after many cycles.

Development of a 170-mm hollow corner cube retroreflector for the future lunar laser ranging Hot!

Yun He(何芸), Qi Liu(刘祺), Jing-Jing He(何静静), Ming Li(黎明), Hui-Zong Duan(段会宗), Hsien-Chi Yeh(叶贤基), Jun Luo(罗俊)
Chin. Phys. B, 2018, 27 (10): 100701 doi: 10.1088/1674-1056/27/10/100701
Full Text: [PDF 1231 KB] (66) RICH HTML
Show Abstract

Over the past 50 years, lunar laser ranging has made great contributions to the understanding of the Earth-Moon system and the tests of general relativity. However, because of the lunar libration, the Apollo and Lunokhod corner-cube retroreflector (CCR) arrays placed on the Moon currently limit the ranging precision to a few centimeters for a single photon received. Therefore, it is necessary to deploy a new retroreflector with a single and large aperture to improve the ranging precision by at least one order of magnitude. Here we present a hollow retroreflector with a 170-mm aperture fabricated using hydroxide-catalysis bonding technology. The precisions of the two dihedral angles are achieved by the mirror processing with a sub-arc-second precision perpendicularity, and the remaining one is adjusted utilizing an auxiliary optical configuration including two autocollimators. The achieved precisions of the three dihedral angles are 0.10 arc-second, 0.30 arc-second, and 0.24 arc-second, indicating the 68.5% return signal intensity of ideal Apollo 11/14 based on the far field diffraction pattern simulation. We anticipate that this hollow CCR can be applied in the new generation of lunar laser ranging.

Decoherence of macroscopic objects from relativistic effect Hot!

Guo-Hui Dong(董国慧), Yu-Han Ma(马宇翰), Jing-Fu Chen(陈劲夫), Xin Wang(王欣), Chang-Pu Sun(孙昌璞)
Chin. Phys. B, 2018, 27 (10): 100301 doi: 10.1088/1674-1056/27/10/100301
Full Text: [PDF 2005 KB] (104) RICH HTML
Show Abstract

We study how the decoherence of macroscopic objects originates intrinsically from the relativistic effect. With the degree of freedom of the center of mass (CM) characterizing the collective quantum state of a macroscopic object (MO), it is found that an MO consisting of N particles can decohere with a time scale of no more than √N-1. Here, the special relativity can induce the coupling of the collective motion mode and the relative motion modes in an order of 1/c2, which intrinsically results in the above minimum decoherence.

Potentials of classical force fields for interactions between Na+ and carbon nanotubes Hot!

De-Yuan Li(李德远), Guo-Sheng Shi(石国升), Feng Hong(洪峰), Hai-Ping Fang(方海平)
Chin. Phys. B, 2018, 27 (9): 098801 doi: 10.1088/1674-1056/27/9/098801
Full Text: [PDF 2293 KB] (49) RICH HTML
Show Abstract

Carbon nanotubes (CNTs) have long been expected to be excellent nanochannels for use in desalination membranes and other bio-inspired human-made channels owing to their experimentally confirmed ultrafast water flow and theoretically predicted ion rejection. The correct classical force field potential for the interactions between cations and CNTs plays a crucial role in understanding the transport behaviors of ions near and inside the CNT, which is key to these expectations. Here, using density functional theory calculations, we provide classical force field potentials for the interactions of Na+/hydrated Na+ with (7,7), (8,8), (9,9), and (10,10)-type CNTs. These potentials can be directly used in current popular classical software such as nanoscale molecular dynamics (NAMD) by employing the tclBC interface. By incorporating the potential of hydrated cation-π interactions to classical all-atom force fields, we show that the ions will move inside the CNT and accumulate, which will block the water flow in wide CNTs. This blockage of water flow in wide CNTs is consistent with recent experimental observations. These results will be helpful for the understanding and design of desalination membranes, new types of nanofluidic channels, nanosensors, and nanoreactors based on CNT platforms.

0-π transition induced by the barrier strength in spin superconductor Josephson junctions Hot!

Wen Zeng(曾文), Rui Shen(沈瑞)
Chin. Phys. B, 2018, 27 (9): 097401 doi: 10.1088/1674-1056/27/9/097401
Full Text: [PDF 405 KB] (45) RICH HTML
Show Abstract

The Andreev-like levels and the free energy of the spin superconductor/insulator/spin superconductor junction are obtained by using the Bogoliubov-de Gennes equation. The phase dependence of the spin supercurrents exhibits a 0-π transition by changing the barrier strength. The dependences of the critical current on the barrier strength and the temperature are also presented.

Visualizing light-to-electricity conversion process in InGaN/GaN multi-quantum wells with a p-n junction Hot!

Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Haiyan Wu(吴海燕), Ziguang Ma(马紫光), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘)
Chin. Phys. B, 2018, 27 (9): 097104 doi: 10.1088/1674-1056/27/9/097104
Full Text: [PDF 666 KB] (35) RICH HTML
Show Abstract

Absorption and carrier transport behavior plays an important role in the light-to-electricity conversion process, which is difficult to characterize. Here we develop a method to visualize such a conversion process in the InGaN/GaN multi-quantum wells embedded in a p-n junction. Under non-resonant absorption conditions, a photocurrent was generated and the photoluminescence intensity decayed by more than 70% when the p-n junction out-circuit was switched from open to short. However, when the excitation photon energy decreased to the resonant absorption edge, the photocurrent dropped drastically and the photoluminescence under open and short circuit conditions showed similar intensity. These results indicate that the escaping of the photo-generated carriers from the quantum wells is closely related to the excitation photon energy.

Pressure effect in the Kondo semimetal CeRu4Sn6 with nontrivial topology Hot!

Jiahao Zhang(张佳浩), Shuai Zhang(张帅), Ziheng Chen(陈子珩), Meng Lv(吕孟), Hengcan Zhao(赵恒灿), Yi-feng Yang(杨义峰), Genfu Chen(陈根富), Peijie Sun(孙培杰)
Chin. Phys. B, 2018, 27 (9): 097103 doi: 10.1088/1674-1056/27/9/097103
Full Text: [PDF 978 KB] (60) RICH HTML
Show Abstract

Kondo semimetal CeRu4Sn6 is attracting renewed attention due to the theoretically predicted nontrivial topology in its electronic band structure. We report hydrostatic and chemical pressure effects on the transport properties of single-and poly-crystalline samples. The electrical resistivity ρ(T) is gradually enhanced by applying pressure over a wide temperature range from room temperature down to 25 mK. Two thermal activation gaps estimated from high-and low-temperature windows are found to increase with pressure. A flat ρ(T) observed at the lowest temperatures below 300 mK appears to be robust against both pressure and field. This feature as well as the increase of the energy gaps calls for more intensive investigations with respect to electron correlations and band topology.

Typicality at quantum-critical points Hot!

Lu Liu(刘录), Anders W Sandvik, Wenan Guo(郭文安)
Chin. Phys. B, 2018, 27 (8): 087501 doi: 10.1088/1674-1056/27/8/087501
Full Text: [PDF 2852 KB] (34) RICH HTML
Show Abstract

We discuss the concept of typicality of quantum states at quantum-critical points, using projector Monte Carlo simulations of an S=1/2 bilayer Heisenberg antiferromagnet as an illustration. With the projection (imaginary) time τ scaled as τ=aLz, L being the system length and z the dynamic critical exponent (which takes the value z=1 in the bilayer model studied here), a critical point can be identified which asymptotically flows to the correct location and universality class with increasing L, independently of the prefactor a and the initial state. Varying the proportionality factor a and the initial state only changes the cross-over behavior into the asymptotic large-L behavior. In some cases, choosing an optimal factor a may also lead to the vanishing of the leading finite-size corrections. The observation of typicality can be used to speed up simulations of quantum criticality, not only within the Monte Carlo approach but also with other numerical methods where imaginary-time evolution is employed, e.g., tensor network states, as it is not necessary to evolve fully to the ground state but only for sufficiently long times to reach the typicality regime.

Nonlinear uniaxial pressure dependence of the resistivity in Sr1-xBaxFe1.97Ni0.03As2 Hot!

Hui-Can Mao(毛慧灿), Dong-Liang Gong(龚冬良), Xiao-Yan Ma(马肖燕), Hui-Qian Luo(罗会仟), Yi-Feng Yang(杨义峰), Lei Shan(单磊), Shi-Liang Li(李世亮)
Chin. Phys. B, 2018, 27 (8): 087402 doi: 10.1088/1674-1056/27/8/087402
Full Text: [PDF 4743 KB] (42) RICH HTML
Show Abstract

Nematic order and its fluctuations have been widely found in iron-based superconductors. Above the nematic order transition temperature, the resistivity shows a linear relationship with the uniaxial pressure or strain along the nematic direction and the normalized slope is thought to be associated with nematic susceptibility. Here we systematically studied the uniaxial pressure dependence of the resistivity in Sr1-xBaxFe1.97Ni0.03As2, where nonlinear behaviors are observed near the nematic transition temperature. We show that it can be well explained by the Landau theory for the second-order phase transitions considering that the external field is not zero. The effect of the coupling between the isotropic and nematic channels is shown to be negligible. Moreover, our results suggest that the nature of the magnetic and nematic transitions in Sr1-xBaxFe2As2 is determined by the strength of the magnetic-elastic coupling.

High quality PdTe2 thin films grown by molecular beam epitaxy Hot!

En Li(李恩), Rui-Zi Zhang(张瑞梓), Hang Li(李航), Chen Liu(刘晨), Geng Li(李更), Jia-Ou Wang(王嘉鸥), Tian Qian(钱天), Hong Ding(丁洪), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱), Xiao Lin(林晓), Hong-Jun Gao(高鸿钧)
Chin. Phys. B, 2018, 27 (8): 086804 doi: 10.1088/1674-1056/27/8/086804
Full Text: [PDF 1224 KB] (129) RICH HTML
Show Abstract

PdTe2, a member of layered transition metal dichalcogenides (TMDs), has aroused significant research interest due to the coexistence of superconductivity and type-Ⅱ Dirac fermions. It provides a promising platform to explore the interplay between superconducting quasiparticles and Dirac fermions. Moreover, PdTe2 has also been used as a substrate for monolayer antimonene growth. Here in this paper, we report the epitaxial growth of high quality PdTe2 films on bilayer graphene/SiC(0001) by molecular beam epitaxy (MBE). Atomically thin films are characterized by scanning tunneling microscopy (STM), X-ray photoemission spectroscopy (XPS), low-energy electron diffraction (LEED), and Raman spectroscopy. The band structure of 6-layer PdTe2 film is measured by angle-resolved photoemission spectroscopy (ARPES). Moreover, our air exposure experiments show excellent chemical stability of epitaxial PdTe2 film. High-quality PdTe2 films provide opportunities to build antimonene/PdTe2 heterostructure in ultrahigh vacuum for future applications in electronic and optoelectronic nanodevices.

Unconventional lattice dynamics in few-layer h-BN and indium iodide crystals Hot!

Gan Hu(胡干), Jian-Qi Huang(黄建啟), Ya-Ning Wang(王雅宁), Teng Yang(杨腾), Bao-Juan Dong(董宝娟), Ji-Zhang Wang(王吉章), Bo Zhao(赵波), Sajjad Ali(阿里·萨贾德), Zhi-Dong Zhang(张志东)
Chin. Phys. B, 2018, 27 (8): 086301 doi: 10.1088/1674-1056/27/8/086301
Full Text: [PDF 3952 KB] (62) RICH HTML
Show Abstract

Unusual quadratic dispersion of flexural vibrational mode and red-shift of Raman shift of in-plane mode with increasing layer-number are quite common and interesting in low-dimensional materials, but their physical origins still remain open questions. Combining ab initio density functional theory calculations with the empirical force-constant model, we study the lattice dynamics of two typical two-dimensional (2D) systems, few-layer h-BN and indium iodide (InI). We found that the unusual quadratic dispersion of flexural mode frequency on wave vector may be comprehended based on the competition between atomic interactions of different neighbors. Long-range interaction plays an essential role in determining the dynamic stability of the 2D systems. The frequency red-shift of in-plane Raman-active mode from monolayer to bulk arises mainly from the reduced long-range interaction due to the increasing screening effect.

Behavior of fractional quantum Hall states in LLL and 1LL with in-plane magnetic field and Landau level mixing: A numerical investigation Hot!

Lin-Peng Yang(杨林鹏), Qi Li(李骐), Zi-Xiang Hu(胡自翔)
Chin. Phys. B, 2018, 27 (8): 087306 doi: 10.1088/1674-1056/27/8/087306
Full Text: [PDF 847 KB] (46) RICH HTML
Show Abstract

By exactly solving the effective two-body interaction for a two-dimensional electron system with layer thickness and an in-plane magnetic field, we recently found that the effective interaction can be described by the generalized pseudopotentials (PPs) without the rotational symmetry. With this pseudopotential description, we numerically investigate the behavior of the fractional quantum Hall (FQH) states both in the lowest Landau level (LLL) and first excited Landau level (1LL). The enhancements of the 7/3 FQH state on the 1LL for a small tilted magnetic field are observed when layer thickness is larger than some critical values, while the gap of the 1/3 state in the LLL monotonically reduced with increasing the in-plane field. From the static structure factor calculation, we find that the systems are strongly anisotropic and finally enter into a stripe phase with a large tilting. With considering the Landau level mixing correction on the two-body interaction, we find the strong LL mixing cancels the enhancements of the FQH states in the 1LL.

Structural phase transition, precursory electronic anomaly, and strong-coupling superconductivity in quasi-skutterudite (Sr1-xCax)3Ir4Sn13 and Ca3Rh4Sn13 Hot!

Jun Luo(罗军), Jie Yang(杨杰), S Maeda, Zheng Li(李政), Guo-Qing Zheng(郑国庆)
Chin. Phys. B, 2018, 27 (7): 077401 doi: 10.1088/1674-1056/27/7/077401
Full Text: [PDF 1048 KB] (64) RICH HTML
Show Abstract

The interplay between superconductivity and structural phase transition has attracted enormous interest in recent years. For example, in Fe-pnictide high temperature superconductors, quantum fluctuations in association with structural phase transition have been proposed to lead to many novel physical properties and even the superconductivity itself. Here we report a finding that the quasi-skutterudite superconductors (Sr1-xCax)3Ir4Sn13 (x=0, 0.5, 1) and Ca3Rh4Sn13 show some unusual properties similar to the Fe-pnictides, through 119Sn nuclear magnetic resonance (NMR) measurements. In (Sr1-xCax)3Ir4Sn13, the NMR linewidth increases below a temperature T* that is higher than the structural phase transition temperature Ts. The spin-lattice relaxation rate (1/T1) divided by temperature (T), 1/T1T and the Knight shift K increase with decreasing T down to T*, but start to decrease below T*, and followed by more distinct changes at Ts. In contrast, none of the anomalies is observed in Ca3Rh4Sn13 that does not undergo a structural phase transition. The precursory phenomenon above the structural phase transition resembles that occurring in Fe-pnictides. In the superconducting state of Ca3Ir4Sn13, 1/T1 decays as exp(-/kBT) with a large gap =2.21 kBTc, yet without a Hebel-Slichter coherence peak, which indicates strong-coupling superconductivity. Our results provide new insight into the relationship between superconductivity and the electronic-structure change associated with structural phase transition.

A high-performance rechargeable Li-O2 battery with quasi-solid-state electrolyte Hot!

Jia-Yue Peng(彭佳悦), Jie Huang(黄杰), Wen-Jun Li(李文俊), Yi Wang(王怡), Xiqian Yu(禹习谦), Yongsheng Hu(胡勇胜), Liquan Chen(陈立泉), Hong Li(李泓)
Chin. Phys. B, 2018, 27 (7): 078201 doi: 10.1088/1674-1056/27/7/078201
Full Text: [PDF 2740 KB] (50) RICH HTML
Show Abstract

A novel transparent and soft quasi-solid-state electrolyte (QSSE) was proposed and fabricated, which consists of ionic liquid (PYR14TFSI) and nano-fumed silica. The QSSE demonstrates high ionic conductivity of 4.6×10-4 S/cm at room temperature and wide electrochemical stability window of over 5 V. The Li-O2 battery using such quasi-solid-state electrolyte exhibits a low charge-discharge overpotential at the first cycle and excellent long-term cyclability over 500 cycles.

Image charge effect on the light emission of rutile TiO2(110) induced by a scanning tunneling microscope Hot!

Chaoyu Guo(郭钞宇), Xiangzhi Meng(孟祥志), Qin Wang(王钦), Ying Jiang(江颖)
Chin. Phys. B, 2018, 27 (7): 077301 doi: 10.1088/1674-1056/27/7/077301
Full Text: [PDF 1087 KB] (53) RICH HTML
Show Abstract

The plasmon-enhanced light emission of rutile TiO2(110) surface has been investigated by a low-temperature scanning tunneling microscope (STM). We found that the photon emission arises from the inelastic electron tunneling between the STM tip and the conduction band or defect states of TiO2(110). In contrast to the Au(111) surface, the maximum photon energy as a function of the bias voltage clearly deviates from the linear scaling behavior, suggesting the non-negligible effect of the STM tip on the band structure of TiO2. By performing differential conductance (dI/dV) measurements, it was revealed that such a deviation is not related to the tip-induced band bending, but is attributed to the image charge effect of the metal tip, which significantly shifts the band edges of the TiO2(110) towards the Femi level (EF) during the tunneling process. This work not only sheds new lights onto the understanding of plasmon-enhanced light emission of semiconductor surfaces, but also opens up a new avenue for engineering the plasmon-mediated interfacial charge transfer in molecular and semiconducting materials.

Momentum distribution and non-local high order correlation functions of 1D strongly interacting Bose gas Hot!

EJKP Nandani, Xi-Wen Guan(管习文)
Chin. Phys. B, 2018, 27 (7): 070306 doi: 10.1088/1674-1056/27/7/070306
Full Text: [PDF 359 KB] (64) RICH HTML
Show Abstract

The Lieb-Liniger model is a prototypical integrable model and has been turned into the benchmark physics in theoretical and numerical investigations of low-dimensional quantum systems. In this note, we present various methods for calculating local and nonlocal M-particle correlation functions, momentum distribution, and static structure factor. In particular, using the Bethe ansatz wave function of the strong coupling Lieb-Liniger model, we analytically calculate the two-point correlation function, the large moment tail of the momentum distribution, and the static structure factor of the model in terms of the fractional statistical parameter α=1-2/γ, where γ is the dimensionless interaction strength. We also discuss the Tan's adiabatic relation and other universal relations for the strongly repulsive Lieb-Liniger model in terms of the fractional statistical parameter.

Page 1 of 19 364 records
Copyright © the Chinese Physical Society
Address: Institute of Physics, Chinese Academy of Sciences, P. O. Box 603,Beijing 100190 China(100190)
Tel: 010-82649026   Fax: 010-82649027   E-Mail: cpb@aphy.iphy.ac.cn
Supported by Beijing Magtech Co. Ltd. Tel: 86-010-62662699 E-mail: support@magtech.com.cn