|
|
Evolution from the Kondo phase to the RKKY phase in the small impurity spacing regime of the two-impurity Anderson model |
Hou-Min Du(杜厚旻) and Yu-Liang Liu(刘玉良)† |
Department of Physics, Renmin University of China, Beijing 100872, China |
|
|
Abstract Understanding the quantum critical phenomena is one of the most important and challenging tasks in condensed matter physics and the two-impurity Anderson model (TIAM) is a good starting point for this exploration. To this end, we employ the algebraic equation of motion approach to calculate the TIAM and analytically obtain the explicit single-particle impurity Green function under the soft cut-off approximation (SCA). This approach effectively incorporates the impurity spacing as an intrinsic parameter. By solving the pole equations of the Green function, we have, for the first time, qualitatively calculated the spectral weight functions of the corresponding low-energy excitations. We find that when the impurity spacing is less than one lattice distance, the dynamic Rudermann-Kittel-Kasuya-Yosida (RKKY) interaction effectively enters, resulting in a rapid increase in the spectral weights of the RKKY phase, which ultimately surpass those of the Kondo phase; while the spectral weights of the Kondo phase are strongly suppressed. From the perspective of spectral weights, we further confirm the existence of a crossover from the Kondo phase to the RKKY phase in the TIAM. Based on these results, the reasons for the phenomenon of the Kondo resonance splitting are also discussed.
|
Received: 05 November 2024
Revised: 31 December 2024
Accepted manuscript online: 03 January 2025
|
PACS:
|
71.23.An
|
(Theories and models; localized states)
|
|
75.30.Hx
|
(Magnetic impurity interactions)
|
|
03.65.Fd
|
(Algebraic methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974420). |
Corresponding Authors:
Yu-Liang Liu
E-mail: ylliu@ruc.edu.cn
|
Cite this article:
Hou-Min Du(杜厚旻) and Yu-Liang Liu(刘玉良)† Evolution from the Kondo phase to the RKKY phase in the small impurity spacing regime of the two-impurity Anderson model 2025 Chin. Phys. B 34 027102
|
[1] Coleman P, Pepin C, Si Q and Ramazashvili R 2001 J. Phys.:Condens. Matter 13 R723 [2] Lohneysen H V, Rosch A, Vojta M and Wolfle P 2007 Rev. Mod. Phys. 79 1015 [3] Vojta M 2006 Philosophical Magazine 86 1807 [4] Yang Y f, Fisk Z, Lee H O, Thompson J and Pines D 2008 Nature 454 611 [5] Hertz J A 1976 Phys. Rev. B 14 1165 [6] Millis A J 1993 Phys. Rev. B 48 7183 [7] Moriya T 1985 Spin fluctuations in itinerant electron magnetism (Berlin:Springer) [8] Senthil T, Vojta M and Sachdev S 2004 Phys. Rev. B 69 035111 [9] Wolfle P and Abrahams E 2011 Phys. Rev. B 84 041101 [10] Yang Y f 2016 Reports on Progress in Physics 79 074501 [11] Alexander S and Anderson P W 1964 Phys. Rev. 133 A1594 [12] Jones B A, Varma C M and Wilkins J W 1988 Phys. Rev. Lett. 61 125 [13] Fye R M and Hirsch J E 1989 Phys. Rev. B 40 4780 [14] He R Q, Dai J and Lu Z Y 2015 Phys. Rev. B 91 155140 [15] Affleck I, Ludwig A W W and Jones B A 1995 Phys. Rev. B 52 9528 [16] Silva J B, Lima W L C, Oliveira W C, Mello J L N, Oliveira L N and Wilkins J W 1996 Phys. Rev. Lett. 76 275 [17] Eickhoff F, Lechtenberg B and Anders F B 2018 Phys. Rev. B 98 115103 [18] Linneweber T, Bunemann J, Mahmoud Z M M and Gebhard F 2017 J. Phys.:Condens. Matter 29 445603 [19] Dong J J, Huang D and Yang Y F 2021 Phys. Rev. B 104 L081115 [20] Vojta M, Bulla R and Hofstetter W 2002 Phys. Rev. B 65 140405 [21] Jeong H, Chang A M and Melloch M R 2001 Science 293 2221 [22] Craig N J, Taylor J M, Lester E A, Marcus C M, Hanson M P and Gossard A C 2004 Science 304 565 [23] Bork J, Zhang Y h, Diekhoner L, Borda L, Simon P, Kroha J, Wahl P and Kern K 2011 Nat. Phys. 7 901 [24] Pruser H, Dargel P E, Bouhassoune M, Ulbrich R G, Pruschke T, Lounis S and Wenderoth M 2014 Nat. Commun. 5 5417 [25] Spinelli A, Gerrits M, Toskovic R, Bryant B, Ternes M and Otte A 2015 Nat. Commun. 6 10046 [26] Esat T, Lechtenberg B, Deilmann T, Wagner C, Kruger P, Temirov R, Rohlfing M, Anders F B and Tautz F S 2016 Nat. Phys. 12 867 [27] Chen W, Yan Y, Ren M, Zhang T and Feng D 2022 Sci. China Phys. Mech. Astron. 65 246811 [28] Trishin S, Lotze C, Lohss F, Franceschi G, Glazman L I, von Oppen F and Franke K J 2023 Phys. Rev. Lett. 130 176201 [29] Nishimoto S, Pruschke T and Noack R M 2006 J. Phys.:Condens. Matter 18 981 [30] Jabben T, Grewe N and Schmitt S 2012 Phys. Rev. B 85 045133 [31] Sakai O and Shimizu Y 1992 J. Phys. Soc. Jpn. 61 2333 [32] Zhu L and Zhu J X 2011 Phys. Rev. B 83 195103 [33] Allerdt A, Zitko R and Feiguin A E 2018 Phys. Rev. B 97 045103 [34] Liu Y L 2018 Int. J. Mod. Phys. B 32 1850258 [35] Liu Y L 2019 Int. J. Mod. Phys. B 33 1950355 [36] Liu Y L 2021 Int. J. Mod. Phys. B 35 2150064 [37] Du H M and Liu Y L 2023 Chin. Phys. B 32 047501 [38] Tyablikov S 1959 Ukrain. Mat. 11 287 [39] Zubarev D N 1960 Soviet Physics Uspekhi 3 320 [40] Lacroix C 1981 J. Phys. F:Metal Phys. 11 2389 [41] Chen M L and Wang S J 2007 Chin. Phys. B 16 2096 [42] Fan P, Yang K, Ma K H and Tong N H 2018 Phys. Rev. B 97 165140 [43] Mahmoud Z M M, Bunemann J and Gebhard F 2017 Physica Status Solidi (b)254 1600842 [44] Haldane F D M 1978 Phys. Rev. Lett. 40 416 [45] Nejati A, Ballmann K and Kroha J 2017 Phys. Rev. Lett. 118 117204 [46] Barzykin V and Affleck I 1998 Phys. Rev. B 57 432 [47] Lechtenberg B 2016 Equilibrium and nonequilibrium dynamics close to impurity quantum phase transitions Ph.D. thesis (TU Dortmund) [48] Fan P, Tong N H and Zhu Z G 2022 Phys. Rev. B 106 155130 [49] Gunnarsson O and Schonhammer K 1987 High Energy Spectroscopy (Handbook on the Physics and Chemistry of Rare Earths vol 10)(Elsevier) pp. 103-163 [50] Zitko R and Bonca J 2006 Phys. Rev. B 74 045312 [51] Ding W 2022 arXiv:2202.12082 [52] Heinrich A J, Gupta J A, Lutz C P and Eigler D M 2004 Science 306 466 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|