Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(3): 038704    DOI: 10.1088/1674-1056/adacc8
RAPID COMMUNICATION Prev   Next  

Explosive information spreading in higher-order networks: Effect of social reinforcement

Yu Zhou(周宇)1, Yingpeng Liu(刘英鹏)1, Liang Yuan(袁亮)1, Youhao Zhuo(卓友濠)1, Kesheng Xu(徐克生)1, Jiao Wu(吴娇)2,†, and Muhua Zheng(郑木华)1
1 School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China;
2 School of Mathematical Sciences, Jiangsu University, Zhenjiang 212013, China
Abstract  Information spreading has been investigated for many years, but the mechanism of why the information explosively catches on overnight is still under debate. This explosive spreading phenomenon was usually considered driven separately by social reinforcement or higher-order interactions. However, due to the limitations of empirical data and theoretical analysis, how the higher-order network structure affects the explosive information spreading under the role of social reinforcement has not been fully explored. In this work, we propose an information-spreading model by considering the social reinforcement in real and synthetic higher-order networks, describable as hypergraphs. Depending on the average group size (hyperedge cardinality) and node membership (hyperdegree), we observe two different spreading behaviors: (i) The spreading progress is not sensitive to social reinforcement, resulting in the information localized in a small part of nodes; (ii) a strong social reinforcement will promote the large-scale spread of information and induce an explosive transition. Moreover, a large average group size and membership would be beneficial to the appearance of the explosive transition. Further, we display that the heterogeneity of the node membership and group size distributions benefit the information spreading. Finally, we extend the group-based approximate master equations to verify the simulation results. Our findings may help us to comprehend the rapidly information-spreading phenomenon in modern society.
Keywords:  explosive information spreading      social reinforcement      higher-order interactions      complex network  
Received:  17 December 2024      Revised:  14 January 2025      Accepted manuscript online:  22 January 2025
PACS:  87.23.Ge (Dynamics of social systems)  
  64.60.aq (Networks)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12305043 and 12165016), the Natural Science Foundation of Jiangsu Province (Grant No. BK20220511), and the Project of Undergraduate Scientific Research (Grant No. 22A684).
Corresponding Authors:  Jiao Wu     E-mail:  wujiao@ujs.edu.cn

Cite this article: 

Yu Zhou(周宇), Yingpeng Liu(刘英鹏), Liang Yuan(袁亮), Youhao Zhuo(卓友濠), Kesheng Xu(徐克生), Jiao Wu(吴娇), and Muhua Zheng(郑木华) Explosive information spreading in higher-order networks: Effect of social reinforcement 2025 Chin. Phys. B 34 038704

[1] Pastor-Satorras R, Castellano C, Van Mieghem P and Vespignani A 2015 Rev. Mod. Phys. 87 925
[2] Barrat A, Barthelemy M and Vespignani A 2008 Dynamical processes on complex networks (Cambridge university press)
[3] Wang W, Tang M, Stanley H E and Braunstein L A 2017 Reports on Progress in Physics 80 036603
[4] Liu C, Zhan X X, Zhang Z K, Sun G Q and Hui P M 2015 New J. Phys. 17 113045
[5] Zhang Z K, Liu C, Zhan X X, Lu X, Zhang C X and Zhang Y C 2016 Physics Reports 651 1
[6] Zhu X, Ma J, Su X, Tian H, Wang W and Cai S 2019 Complexity 2019 5920187
[7] Feng M, Cai S M, Tang M and Lai Y C 2019 Nat. Commun. 10 3748
[8] Yang Z, Wu J, He J, Xu K and Zheng M 2023 Chaos, Solitons & Fractals 171 113487
[9] Pastor-Satorras R and Vespignani A 2001 Phys. Rev. E 63 066117
[10] Boguná M and Pastor-Satorras R 2002 Phys. Rev. E 66 047104
[11] WangW, Tang M, Zhang H F and Lai Y C 2015 Phys. Rev. E 92 012820
[12] Nematzadeh A, Ferrara E, Flammini A and Ahn Y Y 2014 Phys. Rev. Lett. 113 088701
[13] Wu J, Xu K, Zhang X and Zheng M 2022 Chaos 32 083134
[14] Gómez-Gardeñes J, Lotero L, Taraskin S and Pérez-Reche F 2016 Scientific Reports 6 19767
[15] Liu Q H, Wang W, Tang M, Zhou T and Lai Y C 2017 Phys. Rev. E 95 042320
[16] Xie M, Zhan X X, Liu C and Zhang Z K 2023 Information Processing & Management 60 103161
[17] Lü L, Chen D, Ren X L, Zhang Q M, Zhang Y C and Zhou T 2016 Physics Reports 650 1
[18] Watts D J 2002 Proc. Natl. Acad. Sci. USA 99 5766
[19] Centola D, Eguíluz V M and Macy M W 2007 Physica A 374 449
[20] Dodds P S and Watts D J 2004 Phys. Rev. Lett. 92 218701
[21] Assis V R and Copelli M 2009 PPhys. Rev. E 80 061105
[22] Gross T, D’Lima C and Blasius B 2006 Phys. Rev. Lett. 96 208701
[23] Zheng M, Lü L and Zhao M 2013 Phys. Rev. E 88 012818
[24] Majumdar S N and Krapivsky P 2001 Phys. Rev. E 63 045101
[25] de Kerchove C, Krings G, Lambiotte R, Van Dooren P and Blondel V 2009 Phys. Rev. E 79 016114
[26] Onnela J P and Reed-Tsochas F 2010 Proc. Natl. Acad. Sci. USA 107 18375
[27] Lü L, Chen D B and Zhou T 2011 New J. Phys. 13 123005
[28] Centola D 2010 Science 329 1194
[29] Wu J, Zheng M, Zhang Z K, Wang W, Gu C and Liu Z 2018 Chaos 28 033113
[30] Iacopini I, Petri G, Barrat A and Latora V 2019 Nat. Commun. 10 2485
[31] Matamalas J T, Gómez S and Arenas A 2020 Phys. Rev. Research 2 012049
[32] Battiston F, Amico E, Barrat A, Bianconi G, Ferraz de Arruda G, Franceschiello B, Iacopini I, Kéfi S, Latora V, Moreno Y, et al. 2021 Nat. Phys. 17 1093
[33] Battiston F, Cencetti G, Iacopini I, Latora V, Lucas M, Patania A, Young J G and Petri G 2020 Physics Reports 874 1
[34] Boccaletti S, De Lellis P, del Genio C, Alfaro-Bittner K, Criado R, Jalan S and Romance M 2023 Physics Reports 1018 1
[35] St-Onge G, Iacopini I, Latora V, Barrat A, Petri G, Allard A and Hébert- Dufresne L 2022 Commun. Phys. 5 25
[36] WangW, Nie Y, LiW, Lin T, Shang M S, Su S, Tang Y, Zhang Y C and Sun G Q 2024 Physics Reports 1056 1
[37] Kim J H and Goh K I 2024 Phys. Rev. Lett. 132 087401
[38] Landry N W, Thompson W, Hébert-Dufresne L and Young J G 2024 Phys. Rev. E 110 L042301
[39] Wang X, Wu J, Yang Z, Xu K, Wang Z and Zheng M 2024 Physica A 640 129702
[40] Fang F, Ma J, Ma Y J and Boccaletti S 2024 Chaos, Solitons & Fractals 186 115149
[41] Hébert-Dufresne L, Nöel P A, Marceau V, Allard A and Dubé L J 2010 Phys. Rev. E 82 036115
[42] O’Sullivan D J, O’Keeffe G J, Fennell P G and Gleeson J P 2015 Frontiers in Physics 3 71
[43] Marceau V, Nöel P A, Hébert-Dufresne L, Allard A and Dubé L J 2010 Phys. Rev. E 82 036116
[44] Gleeson J P 2011 Phys. Rev. Lett. 107 068701
[45] St-Onge G, Thibeault V, Allard A, Dubé L J and Hébert-Dufresne L 2021 Phys. Rev. Lett. 126 098301
[46] St-Onge G, Thibeault V, Allard A, Dubé L J and Hébert-Dufresne L 2021 Phys. Rev. E 103 032301
[47] Benson A R, Abebe R, Schaub M T, Jadbabaie A and Kleinberg J 2018 Proc. Natl. Acad. Sci. USA 115 E11221
[48] Sinha A, Shen Z, Song Y, Ma H, Eide D, Hsu B J and Wang K 2015 Proceedings of the 24th International Conference on World Wide Web pp. 243-246
[49] Patania A, Petri G and Vaccarino F 2017 EPJ Data Science 6 18
[50] Wu J, Zheng M, Xu K and Gu C 2020 Nonlinear Dyn. 99 2387
[51] St-Onge G, Hébert-Dufresne L and Allard A 2024 Proc. Natl. Acad. Sci. USA 121 e2312202121
[52] Fosdick B K, Larremore D B, Nishimura J and Ugander J 2018 SIAM Review 60 315
[1] Associated network family of the unified piecewise linear chaotic family and their relevance
Haoying Niu(牛浩瀛) and Jie Liu(刘杰). Chin. Phys. B, 2025, 34(4): 040503.
[2] GPIC: A GPU-based parallel independent cascade algorithm in complex networks
Chang Su(苏畅), Xu Na(那旭), Fang Zhou(周方), and Linyuan Lü(吕琳媛). Chin. Phys. B, 2025, 34(3): 030204.
[3] Characteristics of complex network of heatwaves over China
Xuemin Shen(沈雪敏), Xiaodong Hu(胡晓东), Aixia Feng(冯爱霞), Qiguang Wang(王启光), and Changgui Gu(顾长贵). Chin. Phys. B, 2025, 34(3): 038903.
[4] Node ranking based on graph curvature and PageRank
Hongbo Qu(曲鸿博), Yu-Rong Song(宋玉蓉), Ruqi Li(李汝琦), Min Li(李敏), and Guo-Ping Jiang(蒋国平). Chin. Phys. B, 2025, 34(2): 028901.
[5] Detecting the core of a network by the centralities of the nodes
Peijie Ma(马佩杰), Xuezao Ren(任学藻), Junfang Zhu(朱军芳), and Yanqun Jiang(蒋艳群). Chin. Phys. B, 2024, 33(8): 088903.
[6] Dynamic analysis of major public health emergency transmission considering the dual-layer coupling of community-resident complex networks
Peng Yang(杨鹏), Ruguo Fan(范如国), Yibo Wang(王奕博), and Yingqing Zhang(张应青). Chin. Phys. B, 2024, 33(7): 070206.
[7] Opinion consensus incorporating higher-order interactions in individual-collective networks
Shun Ye(叶顺), Li-Lan Tu(涂俐兰), Xian-Jia Wang(王先甲), Jia Hu(胡佳), and Yi-Chao Wang(王薏潮). Chin. Phys. B, 2024, 33(7): 070201.
[8] Effects of individual heterogeneity on social contagions
Fu-Zhong Nian(年福忠) and Yu Yang(杨宇). Chin. Phys. B, 2024, 33(5): 058705.
[9] Identifying influential spreaders in complex networks based on density entropy and community structure
Zhan Su(苏湛), Lei Chen(陈磊), Jun Ai(艾均), Yu-Yu Zheng(郑雨语), and Na Bie(别娜). Chin. Phys. B, 2024, 33(5): 058901.
[10] Prediction of collapse process and tipping points for mutualistic and competitive networks with k-core method
Dongli Duan(段东立), Feifei Bi(毕菲菲), Sifan Li(李思凡), Chengxing Wu(吴成星), Changchun Lv(吕长春), and Zhiqiang Cai(蔡志强). Chin. Phys. B, 2024, 33(5): 050201.
[11] A multilayer network diffusion-based model for reviewer recommendation
Yiwei Huang(黄羿炜), Shuqi Xu(徐舒琪), Shimin Cai(蔡世民), and Linyuan Lü(吕琳媛). Chin. Phys. B, 2024, 33(3): 038901.
[12] Impact of different interaction behavior on epidemic spreading in time-dependent social networks
Shuai Huang(黄帅), Jie Chen(陈杰), Meng-Yu Li(李梦玉),Yuan-Hao Xu(徐元昊), and Mao-Bin Hu(胡茂彬). Chin. Phys. B, 2024, 33(3): 030205.
[13] Source localization in signed networks with effective distance
Zhi-Wei Ma(马志伟), Lei Sun(孙蕾), Zhi-Guo Ding(丁智国), Yi-Zhen Huang(黄宜真), and Zhao-Long Hu(胡兆龙). Chin. Phys. B, 2024, 33(2): 028902.
[14] Hyperbolic map unravels eight regions in temperature volatility regionalization of Mainland China
Yuxuan Song(宋雨轩), Changgui Gu(顾长贵), Muhua Zheng(郑木华), Aixia Feng(冯爱霞), Yufei Xi(席雨菲), Haiying Wang(王海英), and Huijie Yang(杨会杰). Chin. Phys. B, 2024, 33(12): 128902.
[15] Identify information sources with different start times in complex networks based on sparse observers
Yuan-Zhang Deng(邓元璋), Zhao-Long Hu(胡兆龙), Feilong Lin(林飞龙), Chang-Bing Tang(唐长兵), Hui Wang(王晖), and Yi-Zhen Huang(黄宜真). Chin. Phys. B, 2024, 33(11): 118901.
No Suggested Reading articles found!