1 School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China; 2 School of Mathematical Sciences, Jiangsu University, Zhenjiang 212013, China
Abstract Information spreading has been investigated for many years, but the mechanism of why the information explosively catches on overnight is still under debate. This explosive spreading phenomenon was usually considered driven separately by social reinforcement or higher-order interactions. However, due to the limitations of empirical data and theoretical analysis, how the higher-order network structure affects the explosive information spreading under the role of social reinforcement has not been fully explored. In this work, we propose an information-spreading model by considering the social reinforcement in real and synthetic higher-order networks, describable as hypergraphs. Depending on the average group size (hyperedge cardinality) and node membership (hyperdegree), we observe two different spreading behaviors: (i) The spreading progress is not sensitive to social reinforcement, resulting in the information localized in a small part of nodes; (ii) a strong social reinforcement will promote the large-scale spread of information and induce an explosive transition. Moreover, a large average group size and membership would be beneficial to the appearance of the explosive transition. Further, we display that the heterogeneity of the node membership and group size distributions benefit the information spreading. Finally, we extend the group-based approximate master equations to verify the simulation results. Our findings may help us to comprehend the rapidly information-spreading phenomenon in modern society.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12305043 and 12165016), the Natural Science Foundation of Jiangsu Province (Grant No. BK20220511), and the Project of Undergraduate Scientific Research (Grant No. 22A684).
Yu Zhou(周宇), Yingpeng Liu(刘英鹏), Liang Yuan(袁亮), Youhao Zhuo(卓友濠), Kesheng Xu(徐克生), Jiao Wu(吴娇), and Muhua Zheng(郑木华) Explosive information spreading in higher-order networks: Effect of social reinforcement 2025 Chin. Phys. B 34 038704
[1] Pastor-Satorras R, Castellano C, Van Mieghem P and Vespignani A 2015 Rev. Mod. Phys. 87 925 [2] Barrat A, Barthelemy M and Vespignani A 2008 Dynamical processes on complex networks (Cambridge university press) [3] Wang W, Tang M, Stanley H E and Braunstein L A 2017 Reports on Progress in Physics 80 036603 [4] Liu C, Zhan X X, Zhang Z K, Sun G Q and Hui P M 2015 New J. Phys. 17 113045 [5] Zhang Z K, Liu C, Zhan X X, Lu X, Zhang C X and Zhang Y C 2016 Physics Reports 651 1 [6] Zhu X, Ma J, Su X, Tian H, Wang W and Cai S 2019 Complexity 2019 5920187 [7] Feng M, Cai S M, Tang M and Lai Y C 2019 Nat. Commun. 10 3748 [8] Yang Z, Wu J, He J, Xu K and Zheng M 2023 Chaos, Solitons & Fractals 171 113487 [9] Pastor-Satorras R and Vespignani A 2001 Phys. Rev. E 63 066117 [10] Boguná M and Pastor-Satorras R 2002 Phys. Rev. E 66 047104 [11] WangW, Tang M, Zhang H F and Lai Y C 2015 Phys. Rev. E 92 012820 [12] Nematzadeh A, Ferrara E, Flammini A and Ahn Y Y 2014 Phys. Rev. Lett. 113 088701 [13] Wu J, Xu K, Zhang X and Zheng M 2022 Chaos 32 083134 [14] Gómez-Gardeñes J, Lotero L, Taraskin S and Pérez-Reche F 2016 Scientific Reports 6 19767 [15] Liu Q H, Wang W, Tang M, Zhou T and Lai Y C 2017 Phys. Rev. E 95 042320 [16] Xie M, Zhan X X, Liu C and Zhang Z K 2023 Information Processing & Management 60 103161 [17] Lü L, Chen D, Ren X L, Zhang Q M, Zhang Y C and Zhou T 2016 Physics Reports 650 1 [18] Watts D J 2002 Proc. Natl. Acad. Sci. USA 99 5766 [19] Centola D, Eguíluz V M and Macy M W 2007 Physica A 374 449 [20] Dodds P S and Watts D J 2004 Phys. Rev. Lett. 92 218701 [21] Assis V R and Copelli M 2009 PPhys. Rev. E 80 061105 [22] Gross T, D’Lima C and Blasius B 2006 Phys. Rev. Lett. 96 208701 [23] Zheng M, Lü L and Zhao M 2013 Phys. Rev. E 88 012818 [24] Majumdar S N and Krapivsky P 2001 Phys. Rev. E 63 045101 [25] de Kerchove C, Krings G, Lambiotte R, Van Dooren P and Blondel V 2009 Phys. Rev. E 79 016114 [26] Onnela J P and Reed-Tsochas F 2010 Proc. Natl. Acad. Sci. USA 107 18375 [27] Lü L, Chen D B and Zhou T 2011 New J. Phys. 13 123005 [28] Centola D 2010 Science 329 1194 [29] Wu J, Zheng M, Zhang Z K, Wang W, Gu C and Liu Z 2018 Chaos 28 033113 [30] Iacopini I, Petri G, Barrat A and Latora V 2019 Nat. Commun. 10 2485 [31] Matamalas J T, Gómez S and Arenas A 2020 Phys. Rev. Research 2 012049 [32] Battiston F, Amico E, Barrat A, Bianconi G, Ferraz de Arruda G, Franceschiello B, Iacopini I, Kéfi S, Latora V, Moreno Y, et al. 2021 Nat. Phys. 17 1093 [33] Battiston F, Cencetti G, Iacopini I, Latora V, Lucas M, Patania A, Young J G and Petri G 2020 Physics Reports 874 1 [34] Boccaletti S, De Lellis P, del Genio C, Alfaro-Bittner K, Criado R, Jalan S and Romance M 2023 Physics Reports 1018 1 [35] St-Onge G, Iacopini I, Latora V, Barrat A, Petri G, Allard A and Hébert- Dufresne L 2022 Commun. Phys. 5 25 [36] WangW, Nie Y, LiW, Lin T, Shang M S, Su S, Tang Y, Zhang Y C and Sun G Q 2024 Physics Reports 1056 1 [37] Kim J H and Goh K I 2024 Phys. Rev. Lett. 132 087401 [38] Landry N W, Thompson W, Hébert-Dufresne L and Young J G 2024 Phys. Rev. E 110 L042301 [39] Wang X, Wu J, Yang Z, Xu K, Wang Z and Zheng M 2024 Physica A 640 129702 [40] Fang F, Ma J, Ma Y J and Boccaletti S 2024 Chaos, Solitons & Fractals 186 115149 [41] Hébert-Dufresne L, Nöel P A, Marceau V, Allard A and Dubé L J 2010 Phys. Rev. E 82 036115 [42] O’Sullivan D J, O’Keeffe G J, Fennell P G and Gleeson J P 2015 Frontiers in Physics 3 71 [43] Marceau V, Nöel P A, Hébert-Dufresne L, Allard A and Dubé L J 2010 Phys. Rev. E 82 036116 [44] Gleeson J P 2011 Phys. Rev. Lett. 107 068701 [45] St-Onge G, Thibeault V, Allard A, Dubé L J and Hébert-Dufresne L 2021 Phys. Rev. Lett. 126 098301 [46] St-Onge G, Thibeault V, Allard A, Dubé L J and Hébert-Dufresne L 2021 Phys. Rev. E 103 032301 [47] Benson A R, Abebe R, Schaub M T, Jadbabaie A and Kleinberg J 2018 Proc. Natl. Acad. Sci. USA 115 E11221 [48] Sinha A, Shen Z, Song Y, Ma H, Eide D, Hsu B J and Wang K 2015 Proceedings of the 24th International Conference on World Wide Web pp. 243-246 [49] Patania A, Petri G and Vaccarino F 2017 EPJ Data Science 6 18 [50] Wu J, Zheng M, Xu K and Gu C 2020 Nonlinear Dyn. 99 2387 [51] St-Onge G, Hébert-Dufresne L and Allard A 2024 Proc. Natl. Acad. Sci. USA 121 e2312202121 [52] Fosdick B K, Larremore D B, Nishimura J and Ugander J 2018 SIAM Review 60 315
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.